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Morphemes (e.g. [tune], [-ful], [-ly]) are the basic blocks with which complex
meaning is built. Here, I explore the critical role that morpho-syntactic
rules play in forming the meaning of morphologically complex words,
from two primary standpoints: (i) how semantically rich stem morphemes
(e.g. explode, bake, post) combine with syntactic operators (e.g. -ion, -er,
-age) to output a semantically predictable result; (ii) how this process can
be understood in terms of mathematical operations, easily allowing the
brain to generate representations of novel morphemes and comprehend
novel words. With these ideas in mind, I offer a model of morphological
processing that incorporates semantic and morpho-syntactic operations in
service to meaning composition, and discuss how such a model could be
implemented in the human brain.

This article is part of the theme issue ‘Towards mechanistic models of
meaning composition’.
1. Introduction
That you are understanding the words on this page; that you can understand
me still, when I talk to you in a noisy pub or over the telephone; that you
and I are able to use language to communicate at all, usually effortlessly, exem-
plifies one of the most critical cognitive faculties belonging to human beings.
Here, I focus on a specific aspect of this process, namely how the brain derives
the meaning of a word from a sequence of morphemes (e.g. [dis][appear][ed]).1

A morpheme is defined as the smallest linguistic unit that can bear meaning.
The kind of meaning that it encodes depends on what type of morpheme it is.
For instance, lexical morphemes primarily encode semantic information (e.g.
[house], [dog], [appear]); functional morphemes primarily encode grammatical or
morpho-syntactic information (e.g. [-s], [-ion], [dis-]), such as tense, number
and word class. In English, these usually map to root and affix units, respectively,
though this differs considerably cross-linguistically. Each morpheme is an atomic
element, groups of which are combined in order to form morphologically com-
plex words. For example, to express the process appear in the past, one can
combine the stem morpheme with the inflectional suffix -ed to create appeared;
to convey the opposite, add a negating prefix: disappeared.

In what follows, I will first overview what I consider to be the main neural
processing stages recruited during morphological processing. In many senses,
the selection and description of these stages build from previous models of behav-
ioural data, such as [10], updated to incorporate results from neurolinguistics and
natural language processing (NLP). For each processing stage, I will review the
relevant literature regarding both language comprehension and production.

As should become clear from this review, there are a number of aspects of
morphological processing that remain highly under-specified. The goal of the
second part of this paper, therefore, is to put forward a composite model of
morphological processing, with the aim of offering directions to guide future
research. I am as explicit as possible regarding the semantic and morpho-syn-
tactic features at play, the transformations applied at each stage, and where in
the brain these processes may be happening. In this sense, then, the discussion
will focus on the representational and algorithmic level of analysis, as defined
by David Marr [11].
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Figure 1. Putative brain regions associated with different stages of morphological processing. Orange colour refers to modality-specific written word processes.
Purple colour to modality-specific spoken word processes. Turquoise refers to a-modal processes. PFG, posterior fusiform gyrus; AFG, anterior fusiform gyrus;
STG, superior temporal gyrus; SMG, supramarginal gyrus; AG, angular gyrus; MTG, middle temporal gyrus; ATL, anterior temporal lobe; IFG, inferior frontal gyrus.
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2. Overview of processing stages
In the case of language comprehension, the job of the
language listener is to undo the work of the speaker, and
reconstruct the intended meaning from the produced
expression—to understand the concept disappeared rather
than to articulate it [12–14]. I propose that, to achieve this,
the following processing stages are involved:

(i) Segmentation. Identify which morphemic units are
present.

(ii) Look-up. Connect each of those units with a set of
semantic and/or syntactic features.

(iii) Composition. Following the morpho-syntactic rules of
the language, combine those features to form a com-
plex representation.

(iv) Update. Based on the success of the sentence structure,
adjust the morphemic representations and combina-
tory rules for next time.

Note that these operations need not unfold under a
strictly serial sequence, such that the previous stage com-
pletes before the next is initiated. Rather, based on previous
work, it is likely that operations unfold under a more
cascaded architecture, such that many computations occur
in parallel (e.g. see [15]). The rest of this section will review
the neural evidence in favour of these stages.
(a) Morphological segmentation: identifying the
building blocks

One of the earliest neural processes is morphological segmen-
tation. The goal is to locate the morphological constituents
(roots, derivational and inflectional affixes—defined fully in
§§2b(i–iii), respectively, below) within the written or spoken
input, and link them to a modality-specific representation
(sometimes referred to as a form-based ‘lexeme’2 [16,17]).

Evidence for morphological segmentation comes from
both written and spoken language processing. Putative ana-
tomical locations for these processes are presented in figure 1.
(i) Written word processing
During reading, it appears that the brain segments written
words into morphemes based on an automatic morpho-
orthographic parser ([18–21], among others). Whenever
both a valid root (either free or bound) and a valid suffix
are present in the input, the parser is recruited (e.g. farm-er,
post-age, explode-ion) [22]. This is true even for words like
vulner-able, excurs-ion, whose stems never occur in any other
stem–affix combination [23]. At this stage, the system is not
yet sensitive to the semantic relatedness between the stem
and the complex form. This has been shown to lead to false
parses of mono-morphemic words like corn-er and broth-er;
the parser is not fooled, however, when a stem is present
without a valid affix (e.g. broth-el [21]). Overall, this suggests
that the system segments input based on the semantically
blind identification of morphemes that contain an entry in
the lexicon.

Visual morpheme decomposition has been associated
with activity in the fusiform gyrus using fMRI [24], overlap-
ping with the putative visual word form area [25,26].
Corroborating evidence from magneto-encephalography
(MEG) has also associated this area with morphological seg-
mentation: responses in posterior fusiform gyrus (PFG)
around 130ms after visual presentation are modulated by
bi-gram and orthographic affix frequency [27–29]. This is con-
sistent with research focused on orthographic processing,
which associates this area with the identification of recurring
substrings [30–32]. Slightly more anterior along the fusiform,



Table 1. Summary of experimental variables that have been used to tap into different stages of morphological processing. Here, (a, b), letters of the input;
(X), stem; (Y), affix; (Z), root; (W), morphologically complex word; (C), cohort of morphologically related words; (E), expected value.

feature formula process, timing example study

bigram frequency log
P

(a, b) orthographic, 130 ms Simon et al. [29]

stem frequency log
X

(X) segmentation, 170 ms Gwilliams et al. [27]

affix frequency log
P

(Y ) segmentation, 170 ms Solomyak and Marantz [35]

transition probability P(Y|X ) segmentation, 170 ms Gwilliams and Marantz [23]

root frequency log
P

(Z) lexical access, 350 ms Lewis et al. [34]

family entropy �P
(P(WjC) log2 P(WjC) lexical access, 350 ms del Prado Martin et al. [36]

semantic coherence E(freq(W ))− freq(X + Y ) composition, 400–500 ms Fruchter & Marantz [33]
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responses around 170 ms are modulated by morpheme-
specific properties such as stem frequency, affix frequency
and the frequency with which those units combine (i.e. tran-
sition probability) [23,33–35]. Anterior fusiform gyrus is
therefore associated with decomposing written input into
morphemes.

Table 1 summarizes these different metrics of orthogra-
phic and morphological structure, and specifies the cognitive
process that each putatively taps into.
(ii) Spoken word processing
Less research has been conducted on morphological segmen-
tation of spoken language. Work on speech segmentation, in
general, suggests that words and syllables are identified
using statistical phonotactic regularities [37], acoustic cues
such as co-articulation and word stress [38,39] and lexical
information [40]. Similar kinds of statistical cues appear to
be used for morpheme boundaries as well. In particular,
there is sensitivity to the transition probability between
spoken morphemes [41,42] in superior temporal gyrus
(STG) at around 200 ms after phoneme onset. These moments
of low transition probability may be used as boundary cues
to bind phonological sequences into morphological
constituents.

For both auditory and visual input, then, the system
applies a morphological parser on the input, which segments
the signal based on sensory (pitch, intensity, bigrams), form-
based (identification of affix or stem string) and statistical
information (transition probability).
(b) Lexical access: figuring out what the blocks mean
Identifying the meaning of the segmented morphemes is
often referred to as ‘lexical access’. This stage involves linking
the form-based morpheme to the relevant bundle of semantic
and syntactic features. Each word consists of at least three
pieces: the root, (any number of) derivation(s) and inflection,
even if one of the pieces is not spelled out in the written or
spoken language [43]. Depending on the type of morpheme
being processed, the features are different.
(i) Root access
Root morphemes are the smallest atomic elements that carry
semantic properties; units like: house, dog, walk, love. Based on
previous theoretical work (e.g. [44]), the root is assumed not
yet to be specified for its word class; so, the use of love as a
verb (to love) and a noun (the love) contains the same root
morpheme.

The middle temporal gyrus (MTG) has been implicated
in semantic lexical access in a number of processing models
[45–47], along with the superior temporal sulcus [48]. The
angular gyrus has also been implicated in semantic
memory more broadly (see [49–51] for reviews of anatomical
locations associated with semantic processing).

A particular response component found in MEG, whose
neural source originates from MTG at around 350 ms after
word onset, has been associated specifically with access to
the decomposed root of the whole word [52–54]. This has
been corroborated by the finding that neural activity in this
area, at this latency, is modulated by lemma frequency [35],
polysemy [54] and morphological family entropy [33,53]—
perhaps reflecting competition between the recognition of
different roots.
(ii) Derivation access
Derivational morphology refers to a constituent (e.g. -ion,
-ness, -ly) that creates a new lexeme from that to which it
attaches. It typically does this by changing part of speech
(e.g. employ → employment), by adding substantial non-
grammatical meaning (e.g. child → childhood; friend →
friendship), or both [55].

There are data from cross-modal priming studies indicat-
ing that derivational suffixes can be primed from one word to
another (darkNESS—happiNESS) [56]. This suggests that (i)
there is an amodal representation (i.e. not bound to the
visual or auditory sensory modalities) that can be accessed
and therefore primed during comprehension; (ii) the rep-
resentation is somewhat stable in order to generalize
across lexical contexts. Furthermore, findings from fMRI
link the processing of derived forms with activity in the
left inferior frontal gyrus (LIFG) [57]—i.e. Broca’s area—
which is traditionally associated with syntactic processing,
broadly construed. This region has also been associated
with the processing of verbal argument structure [58],
further implicating the LIFG in derivational morphology,
though, overall, the processing of derivation is not as clear
as it is for roots [59].
(iii) Inflection access
Inflectional morphology invokes no change in word class
or semantic features of the stem. Instead, it specifies the
grammatical characteristics that are obliged by the given
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syntactic category [55]. In English, inflectional morphemes
would be units like -s, -ed, -ing.

Similar to derivational morphology, and with more
empirical support, inflectional morpho-syntactic properties
appear to be processed in the LIFG [60,61]. This area is
recruited for both overt and covert morphology (i.e. inflec-
tions that are realized with a suffix (ten lamb + s) and those
that are silent (ten sheep +∅) [62]), which suggests that the
same processing mechanisms are recruited even when the
morphology is not realized phonetically or orthographically.

(c) Morphological combination: putting the blocks
together

In order to comprehend the meaning of the complex item, the
system needs to put together the semantic and syntactic con-
tent of the constituents. This is referred to as the composition
stage of processing.

The majority of work on morphological composition has
employed quite coarse categorical distinctions between
semantically valid and invalid combinations. For example,
morphologically valid combinations like farm + er elicit a stron-
ger EEG response at around 400–500 ms when compared to
invalid combinations like corn + er [19,63–66]. MEG work has
associated this with activity in the orbito-frontal cortex
[33,67–69].

In a more fine-grained comparison, Fruchter & Marantz
[33] tested just morphologically valid combinations, and
found that the extent to which the meaning of the whole
word is expected given its parts (termed ‘semantic coherence’)
also drives orbito-frontal activity at around 400ms. This has
been interpreted as reflecting a stage that assesses the compat-
ibility between the composed complex representation and the
predictedrepresentationof thewholewordgiven thepartsof the
word. Broadly though, the mechanism by which morphemes
are combined is extremely under-specified, and is a rich
avenue for future study.
3. Composite model of morphological processing
The discussion so far has reviewed the literature regarding
three stages of morphological processing. While neuro-
biological research provides quite a comprehensive explanation
of how the brain segments sensory input into morphological
constituents, our understanding remains poorly defined in
terms of (i) what linguistic features make up the representation
of each morphological unit; (ii) what operations are applied to
those features at each stage of composition. Therefore, the rest
of this article is dedicated to putting forward a framework
that is explicit on both of these points, in order to guide
future studies. It is informed by the neural data reported
above, as well as research from linguistics and NLP.

(a) Morpheme segmentation
It is interesting to note that the neurophsyiological findings
regarding morphological decomposition are echoed in the
engineering solutions developed in NLP. Some tools
employ a storage ‘dictionary’ of morphological constituents
that are compared to the input to derive units from the
speech or text stream [70]. This is similar to the stem+ affix
look-up approach of Taft [22]. Other morphological segmenta-
tion tools such as Morfessor work by picking up on statistical
regularities in the input and maximizing the likelihood of
the parse in a unsupervised manner [71]. This is related to sen-
sitivity to grapheme and phoneme transition probability as
attested in the PFG and STG, respectively. Overall, both
types of NLP segmentation—dictionary lookup and statistical
regularity—are attested in the cognitive neuroscience literature
as methods the brain uses for segmentation.

(b) Morpheme representations
The framework presented here treats morphemes (and
words) as a set of semantic and syntactic features. Figure 2
visualizes a collection of some example features for four
words.

Computationally, this means that each morpheme is rep-
resented as a list of numbers. Each slot in the list
corresponds to a particular feature (e.g. cute, loud, plural)
and the number associated with that slot reflects how rel-
evant a feature is for that morpheme. The list of numbers
that represent each morpheme, or each word, will be referred
to as a vector from now on.

Precisely how many semantic dimensions define a word
is likely impossible to answer. But, I propose that all words
are defined relative to the same set of semantic features,
and the feature-slot correspondence is the same across all
words. This systematicity between the index of the vector,
and the meaning of that dimension, is what allows the brain
to keep track of what elements contain what information,
and apply the appropriate computation.

In terms of neural implementation, each dimension of the
vector could be realized by a neuron or neuronal population
that codes for a particular feature. The vector format has been
chosen for modelling purposes because it supports basic
mathematical operations, but the vector format itself is not
critical for how these processes work in the brain.

(i) Root features
The root morpheme is proposed to consist only of semantic
properties. The root in dogs, for example, is dog, which may
have a feature for brown, fluffy, cute, small, mammal and
barks. The root itself is assumed to not be associated with
any particular word class—this is only determined once it
is combined with derivational morphology, as explained
below. So, in its acategorical form, I hypothesize that the
weights for each feature correspond to the average weight
given all the contexts of use of the word.

In NLP, the meaning of words are routinely represented as
word embeddings (e.g. [5–8]). These are vectors created from the
statistical co-occurrence of words, capitalizing on the fact that
words that mean something similar often occur in similar con-
texts.3 They provide a powerful way of representing meaning
and obey simple geometric transformations (for example, sub-
tracting m~an from ki~ng and adding wom~an results in a vector
that closely approximates qu~een [74]). These vectors are typi-
cally created to contain around 50–300 features, where each
feature is extracted using unsupervised techniques such as
principal component analysis. As a consequence of this data-
driven approach, it is often not possible to interpret what
each dimension of the vector actually means.

I want to highlight that even though this is a highly suc-
cessful method for solving language engineering problems,
I am not proposing that this is how the brain acquires dimen-
sions of understanding. Rather, I believe that the dimensions of
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Figure 2. Representing words as vectors. For the three morphologically composed words dog, avocados, whistle, the semantic and syntactic features are displayed.
The first seven features refer to the semantics of the item; the last two features refer to syntactic properties. The labelled disks correspond to the morpho-syntactic
dimensions that are relevant to the word, as primarily provided by the derivation; the weights of those dimensions are specified by the inflection, as shown in
greyscale. Each word is expressed under the same set of semantic dimensions, but the syntactic dimensions differ depending on the word class of the item. The
orange colour denotes that this item is a noun; the green colour, a verb.
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word embeddings, as learnt through corpus statistics, are con-
veniently correlated with the ‘true’ dimensions of meaning
used by the brain, thus leading to their correlation with
neural activity [75]. Determining what those ‘true’ features
are, though, will likely require more manual inspection and
human intuition (e.g. along the lines of [51]).

(ii) Derivation features
Unlike the potentially infinite number of semantic features,
syntactic features are of a closed finite set. Given the signifi-
cant stability of word classes and morpho-syntactic features
cross-linguistically, I propose that the derivation contains a
place-holder for all possible morpho-syntactic properties of
the particular syntactic category [76]. This is very much in
line with categorical structure as proposed by Lieber [77]. For
example, the morpheme -ful, which derives an adjective
from a noun, would contain adjectival morpho-syntactic fea-
tures such as function, complementation, gradation. The suffix
-ion contains nominal features such as case, number, gender.
The suffix -ify contains verbal features such as tense, aspect,
mood. So, even though English does not mark grammatical
gender, a native English speaker would still have a slot for
this morpho-syntactic feature in their representation of
nouns. The index location of these morpho-syntactic features
would also always be stable within the representation of the
whole word (so, which entry in the vector, for the compu-
tational implementation; which feature-sensitive neuron(s),
for the neural implementation). This way, the system knows
from where to extract the derivational dimensions, and on
what features to apply the relevant compositional functions.

Critically, the derivation only serves to specify which
morpho-syntactic features are of potential relevance. It does
not actually contain the weights for each dimension—that is
the job of the inflection, as expanded upon below. In this
way, then, the derivation acts as a kind of coordinate frame:
it determines the word class of the whole word by specifying
the relevant syntactic dimensions within which it should be
expressed. In figure 3, the coordinate frame is depicted by
the colour of the vector.

I propose that the derivation is also specified in terms of
the same semantic dimensions that define the root mor-
pheme. For example, this semantic feature would be shared
between childhood, manhood and womanhood; and between
charmer, kisser and walker. Furthermore, there may also be
semantic similarities within word classes more generally,
either expressed as an explicit feature, or as an emergent
property of occupying similar syntactic roles. For example,
the semantic noun-y-ness associated with mountain may be
shared with the noun-y-ness of petrol.

(iii) Inflection features
I propose that the inflectional morpheme serves to specify the
value for each of the morpho-syntactic dimensions identified
by the derivation. For example, if the derivation recognizes
number as a relevant dimension for the stem, it is the inflec-
tion that specifies whether the word is singular or plural. If
the derivation specifies a feature that is not applicable to
the word being processed, such as gender for the English
word table, then the inflection simply allocates a zero
weight. This is consistent with Levelt et al.’s [81] lexical
access model of speech production.

(c) Compositional computations
Now I move to a critical aspect of morphological processing,
which is how the morphemes are combined in order to form
a complex meaning. The basic proposal here is that the three
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Figure 3. Morpho-syntactic composition, detailing the morphological composition recruited during the processing of the sentence dogs whistled tunefully. The colour
specifies the word class of the unit ( purple, acategorical; orange, nominal; green, verbal; red, adjectival; blue, adverbial). The index of the feature in the vector
is what determines its semantic/syntactic function. ∅, a morpheme with no phonological or orthographic realization; {ROOT, DER}, concatenation of vectors;
�, element-wise multiplication; +, addition; α, learnt combinatorial weight. This allows the modulation of the semantic features to be adjusted with experience
with a particular language. I am assuming, in line with linguistic theories [78–80], that the root is unspecified for word class (e.g. adjective, noun, verb). Adj,
adjective; Adv, adverb; Der, derivation; Infl, inflection; N, noun; NP, noun phrase; S, sentence; V, verb; VP, verb phrase.

Table 2. Mathematical example of the derivational processes leading to the formation of the complex word whistler. � refers to element-wise multiplication
between vectors. + refers to vector addition. Top part of the table corresponds to semantic dimensions; bottom part to syntactic dimensions. The semantic
dimension labels were taken from [51].

whistle
(root)

Ø
(verbal)

whistle
(stem)

-er
(nominal)

whistler
(complex noun)

-s
(inflection)

whistlers
(inflected)

sound 0.9 1.0 0.9 1.0 0.9 Ø 0.9

social 0.3 0.8 0.24 5.0 1.2 Ø 1.2

shape 0.5 � 0.2 = 0.1 � 0.5 = 0.05 + Ø = 0.05

happy 0.5 2.0 1.0 1.0 1.0 Ø 1.0

human 0.2 0.3 0.06 10.0 0.6 Ø 0.6

Ø tense tense plural plural 1 1

Ø aspect aspect gender gender 0 0
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types of morphemes obey three types of combinatoric
operations, which unfold in a particular order, and with pre-
dictable consequences for the semantic and syntactic outcome
of the word. Below, each combinatorial stage of processing is
explained in turn.

(i) Concatenation and multiplication to create the stem
morpheme

The first operation involves combining the semantics of the
root morpheme (purple vector in figure 3, step 1) with
morpho-syntactic dimensions of the initial derivation (step
2). This forms the stem morpheme, which is specified for
its word class (step 3) [44].
Computationally, I propose that this involves two steps.
One is appending the syntactic dimensions, which are of
potential relevance given the word-class of the derivation,
to the representation of the root morpheme. Second is
modulating the semantic features of the root, relative to
the word-class of the derivation. This second procedure
can be achieved through element-wise multiplication,
such that the derivation systematically increases the
weight of certain dimensions and decreases the weight of
others. This forms a stem morpheme, whose semantic and
syntactic properties are defined relative to its established
word class. An explicit example of this process is
shown in table 2.
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(ii) Multiplication at each derivation
After this initial stem-formation stage, any number of
additional derivational operations can then be applied (step
4 in figure 3). Each additional transformation involves adjust-
ing which morpho-syntactic dimensions are relevant, and at
the same time, modulating the semantic dimensions in line
with the syntactic category. For example, if transforming a
noun into a verb, the relevant syntactic dimensions change
from number and gender to tense and aspect. Furthermore,
the semantic dimensions change from highlighting visual
aspects of the concept to kinetic aspects of the concept.

In line with this idea, behavioural studies have shown
that listeners are sensitive to the word class of the stem,
even when the word as a whole ends up being a different
syntactic category (e.g. the verb explode in the nominalization
explosion) [82]. This suggests that the history of syntactic
dimensions is accessible during comprehension.

Critically, I propose that the semantic consequences for
the properties of the word are predictable given knowledge
about the semantic input and the syntactic operators being
applied. In theory, this means that a derivation will always
modulate the features of the root in the same way, and this
will generalize across lexical contexts. As expanded upon
below, this connection between syntax and meaning is
precisely what allows for the comprehension of novel words.

(iii) Addition at the inflection
The final stage involves combining the lexical structure with
the inflectional morpheme (step 6 in figure 3). Here, I have
denoted the combinatorial operation as simple element-wise
vector addition (+) between the morpho-syntactic features
of the derivation (all of which are zero) and those of the
inflection (non-zero). In this way, the inflection works to
specify the weights of the derivational suffix, making explicit
which morpho-syntactic properties are relevant and to what
extent. This is also depicted on the right side of figure 2.

This idea of vector manipulation, in service to meaning
composition, has enjoyed success in previous NLP research.
Studies have used morpheme vector representations in a
broad sense, though not strictly coding for semantic versus
morpho-syntactic properties of the units [5–8,83]. Even
when using a simple composition rule such as addition
or element-wise multiplication between morpheme vectors
[84], these composed vectors reasonably approximate
semantic representations of morphologically complex whole
words [85,86]. This suggests that implementing even a very
basic composition function could serve to generate complex
lexical meaning.

(iv) Cross-linguistic coverage
As is true for any model of language processing, it is impor-
tant that it is equally applicable across different languages.
Although in English the usual order of morphological units
is: root, derivation, inflection, this is not the case for
languages with different typologies. For example, some
languages make use of infixation: the embedding of an affix
within a root, rather than before (prefixation) or after (suffixa-
tion). Furthermore, Semitic languages, such as Arabic, have
discontinuous morphemes. In this case, morphemes are
received by the listener in an interleaved fashion, with no
neat boundary between one morpheme and the next. For
example, in the word kataba, the root is expressed as the
consonants k-t-b and the pattern -a-a-a expresses derivational
information.

The current proposal predicts that the same basic set of
operations (stem formation; derivation; inflection) are
always applied, and always in the same order, regardless of
the order in which the information is received. From this per-
spective, knowledge of the language-specific grammar is
used to organize the input into an appropriate syntactic struc-
ture. The input is then processed under the language-general
architecture described here. This leads to the strong predic-
tion that, regardless of the language being processed, the
neural signatures of these processes should always occur in
the same order.
(d) Feedback from the sentence structure
Once the full sentence structure has been created, the sen-
tence can similarly be represented in terms of a set of
semantic and syntactic features. This process—of generating
a semantic–syntactic representation of the sentence—is not
discussed here, but I point the reader to [87] for a related pro-
posal of how this may be achieved. In abstract, the idea is that
the sentence representation is built using similar compo-
sitional rules to those currently described, as well as
incorporating additional non-structural meaning from the
broader situational and pragmatic context.

The final part of the current framework describes how the
system can use this sentence structure to inform morpho-
logical structure in two ways: (i) update or strengthen the
constituent representations; (ii) create representations of
novel morphemes.
(i) Update
Once the sentence is built, its semantic content and syntactic
structure can be used to compute the most likely represen-
tations of morphological constituents. One possible
mathematical implementation of this would be Bayesian
inference, where the most likely representation of morphemej
is inferred based on the representation of the sentence as
computed without morphemej:

P(morphemejjsentence�j)/ P(sentence�jjmorphemej)

� P(morphemej): (3:1)

The discrepancy between the inferred morpheme (the
posterior) and the constituent representation (the prior), can
be thought of as the representational error:

error ¼ P(morphemej)� P(morphemejjsentence�j): (3:2)

If the sentence structure has low semantic or syntactic
validity, the error will be high, which can be used as a
feedback signal in order to update the constituent repre-
sentation. This will improve validity for next time by
making the morpheme representation more similar to the
inferred posterior representation given the sentence structure,
whereas if error is low, the signal will simply strengthen the
prior representations that are already in place.

One obvious prediction borne out of this model is that
the update process would have most influence during
language acquisition, because lexical representations are
still in the process of being formed. An interesting avenue
for further study would be to test how neural correlates
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of representational updates correspond to behavioural
improvements in comprehension and production.

(ii) Create
If the brain primarily conducts language processing via the
atomic morphological units, it is critical that it ensures full
coverage over those units. When encountering a morpheme
for the first time, the sentence structure can be used to gener-
ate the required constituent representations. This idea is quite
similar to syntactic bootstrapping—using structural syntactic
knowledge to understand the semantic content of novel
words [88–90]. Here, I propose this can be achieved by
applying the following sequence of operations.

First, the compositional representation of the whole word
is computed using the steps described in §3c (also depicted in
step 1 of figure 4). The derivational and inflectional mor-
phemes are defined in line with the user’s knowledge of
the language, but because the word has not been encountered
before, the root contains null entries. As shown in equation
(3.3), the composed meaning of the novel word glabbed can
be computed as:

glabbedcomposition ¼ ��DERV þ INFLV: (3:3)

Because the composition is applied using an empty root,
the resulting representation only reflects the morpho-syntac-
tic and semantic properties of the affixes.

Second, a contextual representation of the whole word
can be estimated from the sentence structure, using the
same Bayesian method as described above (and step 2 in
figure 4):

glabbedsentence ¼ P(glabbedjsentence): (3:4)

Third, a subtraction between the compositional meaning
of the word as computed with a null root and the interpreted
meaning of the word given the sentence can be used to
interpolate an atomic representation of the root (step 3 in
figure 4):

glabnew ¼ glabbedsentence � glabbedcomposition: (3:5)

This interpolation process may serve to ‘initialize’ the
representation of a root vector. Then, at each subsequent
use, the update function described above (and shown in
equations (3.1)–(3.2)) can be used to stabilize the weights of
the morphological representation.

Again, while this process is most obviously recruited
during language learning, the same mechanism is hypoth-
esized to still be in effect in proficient speakers. Every time
a listener is faced with a morphologically complex word, all
of the atomic constituents of that word can be computed
through an iterative subtraction of affixes. This makes the pre-
diction that the system will hold representations of
constituents that are never encountered in isolation: for
example, of the root excurse from excursion. Recent evidence
from MEG suggests that this is indeed the case [23].

Filling gaps in the lexicon through either interpolation of
constituents or combination into complex forms is precisely
the main advantage owed to morphological over word-
based representations in NLP. The use of vector represen-
tations of morphemes provides better predictive power,
especially for out-of-vocabulary words that do not exist in
corpora [5–8].

Overall, this highlights that the systematicity between
structure and meaning provides a powerful framework for
generating missing semantic representations based on the
syntactic (both lexical and sentential) situation alone. In this
way, it is plausible that the language faculty in general is
primed to associate syntactic information with particular
semantic information. As discussed, this has clear advantages
for language acquisition, along the lines of syntactic
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bootstrapping, as the process of meaning generation would
be employed every time a new word is encountered.

Taking this idea a step further, one can imagine that not only
the representation is computed, but also a relative activation
strength of that representation. Typically, the activation level
of a word is thought to be a consequence of how often that
word is retrieved from the lexicon: frequent words are accessed
more often and therefore have a higher activation level. An
alternative explanation is that the system wants to make fre-
quently accessed words easier to recognize, and so keeps
them activated. From this perspective, activation level would
be based on the statistical properties of the word—its ortho-
graphic, phonological, morphological structure—rather than
(or independently from) frequencyof exposure andageof acqui-
sition [91]. If this is true, then the activation level of a novelword
could be computed based upon those regularities, and how
active a word is may be reflected in the magnitude of the corre-
sponding vector representation.

To my knowledge, this has not yet been tested, but it
would be easy to do. Although it is a simple distinction,
whether word frequency effects are a consequence of lexical
access or a engineered processing advantage has sizeable conse-
quences for the structure of language process and of the
mental lexicon more generally.

4. Discussion
The goal of this paper is to offer a model of morphological
composition that makes explicit (i) what linguistic features
make up the representation of a morphological unit;
(ii) what operations are applied to those features. While the
proposal is based as much as possible on extant literature, it
also includes some untested, but testable, educated guesses.
There are a number of aspects of morphological processing
in the brain that remain highly under-specified; therefore, a
fruitful avenue for future research will be to explicitly test
the predictions of this model with neural data.

For example, each stage of processing is associated with a
particular compositional rule: concatenation and multipli-
cation at the first derivation, multiplication at subsequent
derivations and addition at the inflection. Furthermore, the
proposal suggests these operations are always performed in
the same order, regardless of the language being processed.
Whether these are indeed the type and order of neural oper-
ations needs to be investigated, perhaps by testing whether a
sequence of intermediate representations are encoded in
neural activity before arriving at the final complex represen-
tation. It would also be informative to correlate the features
of both the simple morpheme vectors and the complex
word vectors with neural activity to test whether the
input/output sequence as tracked by the brain indeed
obeys the mathematical operations outlined here.

Although this article has focused on morphological
processing, it is possible that these basic principles hold
true across multiple units of language. The most obvious ana-
logy is between the syntactic operations used to generate
phrasal structures and those used to generate word struc-
tures. In line with linguistic theory [78–80], the current
proposal makes no meaningful distinction between the
two. This is an intuitive idea. For instance, there is very
little difference between the composed meaning of sort of
blue and blueish, even though one is made of a phrasal struc-
ture and the other a lexical structure. Furthermore, some
languages may choose to encode information using multiple
words (e.g. in the house, English) whereas others may use
multiple morphemes (e.g. extean, Basque). That one contains
orthographic spaces and the other does not is quite arbitrary,
and it is not clear whether there are any meaningful
processing differences [92], above and beyond things like
differences in unit size [93]. Indeed, morphologically rich
languages, such as Ojibwe, allow a very large number of mor-
phemes to be combined to form a sentence structure that
essentially only consists of a single word. In such cases, it is
hard to draw a meaningful distinction between the structure
of morphemes to make words, and the structure of words to
make sentences.

Overall, this work shows that combining insight from
NLP, linguistics and cognitive neuroscience to develop
hypotheses for biological systems is potentially very power-
ful, as each field is essentially tackling the same problem
from differing standpoints. For example, in NLP, the goal is
to engineer a system to achieve language comprehen-
sion with (at least) human-level ability; for neuroscience,
the goal is to understand the system that has already
done that: the human brain. Consequently, each field
has developed tools and insights that (perhaps with a
bit of tweaking in implementation or terminology) are
mutually beneficial.
5. Conclusion
Composition of morphological units provides insight into
the infinite potential of meaning expression and the critical
systematicity between syntactic structure and semantic
consequence. Here, I have briefly reviewed research across
cognitive neuroscience, linguistics and NLP in order to put
forward a model of morphological processing in the human
brain. I hope that this serves as a useful overview and
highlights fruitful avenues for further discovery.
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Endnotes
1There is still some contention as to whether morphemes are neurally
represented. An alternative possibility is that lexical information gets
stored as whole words: the units that would orthographically be
flanked by white space [1,2]. However, given (i) the substantial be-
havioural and neurophysiological evidence that morphemes are in
fact represented (for reviews see [3,4]); (ii) the advantage morpho-
logical representations provide to speech and text recognition
systems [5–8]; and (iii) the need to move the discussion forward, I
take for granted that in representing lexical information, the brain
does indeed encode morphological units, likely in combination
with, but possibly instead of, morphologically complex wholes [9].
2A lexeme relates to all inflected forms of a morpheme: play, plays,
played, playing would all be grouped under the lexeme play.
3This is highly consistent with the Distributional Hypothesis of
semantics—a prevalent usage-based theory of word meaning [72,73].
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