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a b s t r a c t 

The ability to process and respond to external input is critical for adaptive behavior. Why, then, do neural and 

behavioral responses vary across repeated presentations of the same sensory input? Ongoing fluctuations of neu- 

ronal excitability are currently hypothesized to underlie the trial-by-trial variability in sensory processing. To test 

this, we capitalized on intracranial electrophysiology in neurosurgical patients performing an auditory discrim- 

ination task with visual cues: specifically, we examined the interaction between prestimulus alpha oscillations, 

excitability, task performance, and decoded neural stimulus representations. We found that strong prestimulus 

oscillations in the alpha + band (i.e., alpha and neighboring frequencies), rather than the aperiodic signal, corre- 

lated with a low excitability state, indexed by reduced broadband high-frequency activity. This state was related 

to slower reaction times and reduced neural stimulus encoding strength. We propose that the alpha + rhythm 

modulates excitability, thereby resulting in variability in behavior and sensory representations despite identical 

input. 
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. Introduction 

When asked to make repeated perceptual decisions, we often respond

ifferently with each repetition, even when given the same sensory in-

ormation ( Rahnev and Denison, 2018 ; Wyart and Koechlin, 2016 ). We

ddressed the physiological sources of this variability by testing how on-

oing fluctuations in alpha oscillations (7–14 Hz), thought to reflect neu-

onal excitability, affect behavior and neural sensory representations. 

While historically regarded as “noise ”, ongoing neural oscillations

trongly predict neural dynamics and behavior in health ( Busch et al.,

009 ; Grabot and Kayser, 2020 ; Lange et al., 2013 ; Romei et al.,

008b ; Samaha et al., 2020 ) and disease (age-related cognitive de-
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line: Tran et al., 2020 ; Voytek et al., 2015 ; schizophrenia: Uhlhaas and

inger, 2010 ; autism: Simon and Wallace, 2016 ). Here, ongoing oscilla-

ions are operationalized as neural activity occurring without or preced-

ng sensory stimulation (i.e., “prestimulus ”); fluctuations in this activ-

ty are thought to be generated by both endogenous (e.g., arousal, mo-

ivation, top-down attention) and exogenous factors (e.g., behavioral

aradigm, bottom-up attention). Numerous studies have shown that

trong ongoing alpha oscillations are related to a state of low excitabil-

ty, as indexed by a reduction of neuronal firing ( Bollimunta et al., 2008 ,

011 ; Chapeton et al., 2019 ; Dougherty et al., 2017 ; Haegens et al.,

011 ; Lundqvist et al., 2020 ; van Kerkoerle et al., 2014 ; Watson et al.,

018 ), local field potentials ( Potes et al., 2014 ; Spaak et al., 2012 ),

nd hemodynamic activity ( Becker et al., 2011 ; Goldman et al.,

002 ; Mayhew et al., 2013 ). Further, states of strong prestimulus al-

ha oscillations predict behavioral changes, including longer reaction
mber 2021 
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imes (RTs; Zhang et al., 2008 ; Bollimunta et al., 2008 ; Kelly and

’Connell, 2013 ; Bompas et al., 2015 ), lower probability of report-

ng near-threshold sensory stimuli ( Ergenoglu et al., 2004 ; van Dijk

t al., 2008 ; Busch et al., 2009 ; Mathewson et al., 2009 ; Chaumon and

usch, 2014 ; Iemi and Busch, 2018 ; Limbach and Corballis, 2016 ;

emi et al., 2017 ; Craddock et al., 2017 ) or phosphenes ( Romei et al.,

008a ; Samaha et al., 2017 ), and reduced subjective perception (i.e.,

ower confidence: Samaha et al., 2017 , 2020 ; lower visibility ratings:

enwell et al., 2017 ). 

Despite this extensive work on alpha oscillations, the mechanisms

upporting their apparent interrelation to excitability and behavior

emain unclear. One proposal suggests that alpha oscillations re-

ect a mechanism of functional inhibition, regulating the excitability

tate of the neural system and thereby information processing neces-

ary for behavior ( Griffiths et al., 2019 ; Jensen and Mazaheri, 2010 ;

limesch et al., 2007 ; Mathewson et al., 2011 ; Samaha et al., 2020 ;

tephani et al., 2020 ). At the physiological level, a state of functional

nhibition may be achieved, for example, via the activation of GABAer-

ic inhibitory interneurons and/or via reduced excitatory drive (e.g.,

ownregulation of norepinephrine or acetylcholine). According to this

ccount, the behavioral changes associated with alpha oscillations are

aused by alpha power influencing neuronal excitability. Alternatively,

lpha power might affect excitability and behavior via independent

echanisms (e.g., Gundlach et al., 2020 ). As most studies to date re-

ort evidence for a link between alpha power and either excitability or

ehavior, it is currently unknown whether the relationship between al-

ha power and behavior is mediated by a direct excitability modulation

r via an independent mechanism. 

It also remains unknown whether and how the excitability modu-

ation associated with prestimulus alpha oscillations shapes the neural

epresentations of sensory stimuli, on which behavior depends. Using

ecoding as a proxy for neural representation, we compared two hy-

otheses of how alpha oscillations may affect how sensory informa-

ion is represented in the brain. First, low excitability during strong al-

ha oscillations may relate to a state of reduced attentional resources

 Diepen and Mazaheri, 2017 ; Van Diepen et al., 2019 ), associated with

ecreased neural responses ( Mehrpour et al., 2020 ; Treue and Maun-

ell, 1996 ) but increased variability/noise ( Cohen and Maunsell, 2009 ;

itchell et al., 2009 ). The resulting lower signal-to-noise ratio may thus

orsen the encoding of sensory stimuli (i.e., lower decoder accuracy).

econd, low excitability during strong alpha oscillations may be related

o a decrease in the neural response magnitude and variability/noise

 Goris et al., 2014 ; Tomko and Crapper, 1974 ). The resulting decrease

n both signal and noise may thus reduce the overall strength of neural

epresentations (i.e., lower decoder confidence; see Methods), leaving

heir encoding accuracy unaffected ( Samaha et al., 2020 ). 

Here, we tested the functional inhibition account of alpha oscilla-

ions and their effect on behavior and neural sensory representations

y analyzing intracranial electroencephalography (iEEG) recordings in

ine patients with medication-resistant epilepsy ( N = 1044 electrodes)

hile they categorized auditory stimuli (/PA/ or /GA/) preceded by

ifferent visual predictability cues ( Fig. 1 A; Auksztulewicz et al., 2018 ).

atients’ task performance was at ceiling in terms of accuracy, but there

as considerable variability in their reaction times, which allowed us

o study how behavior changed from trial to trial. iEEG enabled us to

stimate ongoing neural oscillations and broadband high-frequency ac-

ivity (BHA, 70–150 Hz), which is thought to reflect neuronal ensem-

le activation patterns, including multiunit activity ( Manning et al.,

009 ; Nir et al., 2007 ; Ray et al., 2008 ; Rich and Wallis, 2017 ; Ray and

aunsell, 2011 ; Miller et al., 2014 ), dendritic processes integral to ex-

itation of neuronal ensembles ( Leszczy ń ski et al., 2020 ; Suzuki and

arkum, 2017 ), as well as additional neuronal processes such as synap-

ic currents ( Lachaux et al., 2012 ). Critical for the present study, BHA

rovides a reliable measure of local neuronal excitability. First, we con-

rmed a hallmark of the functional inhibition account: i.e., a simultane-

us negative relationship between ongoing alpha power and neuronal
2 
xcitability (as indexed by BHA: Potes et al., 2014 ; Spaak et al., 2012 ).

e tested whether this pattern generalizes across brain areas, whether

t reflects a genuine oscillatory modulation, or a change in the aperi-

dic 1/f activity, and whether it is under top-down modulation by the

redictability cues. Second, we tested whether prestimulus alpha power

odulates the neural response to sensory stimuli (as indexed by post-

timulus BHA), and whether this modulation generalizes across sensory

odalities (i.e., visual and auditory). Third, we tested whether the ef-

ect of prestimulus alpha power on poststimulus excitability has conse-

uences for task performance and for decoded neural stimulus repre-

entations. Specifically, we analyzed how prestimulus alpha power in-

uences subsequent RTs, and we used mediation analysis to directly link

restimulus alpha power with RT changes via poststimulus excitability

odulation. In addition, we used multivariate pattern analysis to test

hether prestimulus alpha power affects decoder accuracy and/or con-

dence. 

To preview our results, strong prestimulus oscillations in the alpha +
and (i.e., alpha and neighboring frequencies), rather than the aperiodic

ignal, are correlated with lower BHA, reflecting reduced excitability.

his effect is observed across the brain and sensory modalities as well

s before and after sensory input. Further, strong prestimulus alpha os-

illations are correlated with slower RTs, and with a decrease in decoder

onfidence, but not accuracy. Critically, low excitability during the post-

timulus window mediates the relationship between prestimulus alpha

ower and RTs, demonstrating a link between alpha oscillations, behav-

or, and excitability consistent with functional inhibition. We propose

hat, by modulating neuronal excitability, the ongoing alpha + rhythm

ffects behavior and the strength of neural stimulus representations. 

. Results 

.1. Prestimulus alpha power negatively correlates with BHA 

Based on the functional inhibition account of alpha oscillations, we

ypothesized that a state of low neuronal excitability (here indexed by

educed BHA) would occur specifically during strong prestimulus alpha

scillations. An important aspect of the functional inhibition account

s that it is specific to alpha-band oscillatory activity, rather than the

periodic 1/f signal in the same frequency range. To address this, we

orted the recording sites into “periodic ” and “aperiodic ” based on the

resence or absence of a (local) peak within the alpha frequency range

f the prestimulus power spectrum in noise-locked epochs, respectively

following the methods in Haegens et al., 2014 ). Note that “prestimulus ”

n noise-locked epochs refers to the window before the onset of the noise

mage. To improve the spectral estimates, peak detection was based on

rial-averaged data; we interpreted the peak in periodic sites as reflect-

ng clear oscillatory (periodic) activity across trials, whereas the absence

f a peak in aperiodic sites as indicating a more prominent 1/f aperiodic

ignal across trials (though, peaks may be present in individual trials,

ee Discussion). We found 525 periodic sites with alpha-band oscillatory

ctivity (mean peak at 9 Hz, SEM = 0.10), and 519 aperiodic sites with

on-oscillatory 1/f activity in the alpha frequency range ( Fig. 1 B–D).

f note, periodic sites comprised 52% of the sites in the frontal lobe,

6% of the sites in the occipital lobe, 65% of the sites in the parietal

obe and 36% of the sites in the temporal lobe (see Fig. 1 supplement

or more information on the topographical differences between periodic

nd aperiodic sites). We hypothesized a negative correlation between

restimulus BHA and alpha power specifically for periodic sites (where

lpha-band power reflects a combination of oscillatory and aperiodic

ctivity), but not in aperiodic sites (where alpha-band power reflects

periodic activity). 

To test this hypothesis, we sorted the power spectrum of the 1-s pres-

imulus window in noise-locked epochs into five bins based on single-

rial estimates of alpha power (i.e., 7–14 Hz average) and computed

he average BHA estimated in the same prestimulus window for each

in. This analysis focused on the prestimulus window as fluctuations
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Fig. 1. Experimental paradigm and alpha-band periodic and aperiodic activity. 

A . Schematic overview of the experimental paradigm. In each trial, participants were presented with a sequence of sensory stimuli in a fixed order: a noise image, 

a scene image, a face image, and a target syllable. At the end of the trial, participants reported the syllable identity (/ga/ or /pa/) via button press. Prestimulus 

and poststimulus windows are highlighted in yellow and purple, respectively, for each epoch type. B. Averaged power spectrum of the 1-s window before the noise 

image, shown separately for sites with alpha oscillations (periodic sites, in blue) and sites without a detectable alpha-band peak (aperiodic sites, in green). The inset 

shows the power spectrum for the frequency window of interest. C. Histogram of the alpha-band peak frequencies of the prestimulus power spectrum across periodic 

sites. D . Schematic illustration of the iEEG electrode coverage. Direct recordings of brain activity were obtained using intracranial electrodes implanted in 1044 sites 

across 9 epilepsy patients. Blue and green dots illustrate periodic and aperiodic sites, respectively; the size of blue dots indicates the alpha-band peak frequencies of 

periodic sites. 
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f spectral power during this window are assumed to be ongoing or

ndogenously generated. We used a repeated-measures mixed-effects

NOVA with BHA as dependent variable, periodic/aperiodic sites as

etween-unit factor (with units referring to recording sites), and alpha

ins as within-unit factor. We found a significant main effect of alpha

ins (F(2.18, 2274.72) = 64.72, p < 0.001; all ANOVAs Huynh-Feldt cor-

ected) indicating that, across sites, BHA decreased with alpha power

bin 5 vs. bin 1: t = − 13.99, p < 0.001; all post-hoc comparisons Holm-

onferroni corrected). Further, we found a significant main effect of pe-

iodic/aperiodic sites (F(1, 1042) = 71.50, p < 0.001), with higher BHA

n periodic sites ( t = 8.46, p < 0.001). Critically, we found a signifi-

ant interaction effect between periodic/aperiodic sites and alpha bins

F(2.18, 2274.72) = 53.73, p < 0.001), indicating that prestimulus BHA

ecreased with prestimulus alpha power in periodic sites (bin 5 vs. bin

: t = − 19.51, p < 0.001; Fig. 2 A/C/E), but not in aperiodic sites (bin 5 vs.

in 1: t = − 0.33, p = 1; Fig. 2 B/D), consistent with the functional in-

ibition hypothesis. An anatomical map of this effect in periodic sites

 Fig. 2 E) revealed a widespread BHA reduction during states of strong

restimulus alpha power across the brain. 

We replicated the interaction effect using frequency-normalized BHA

stimates (F(2.21,2302.49) = 50.50, p < 0.001; bin5 vs. bin1 in periodic

ites: t = − 18.47, p < 0.001; bin5 vs. bin1 in aperiodic sites: t = 0.42, p = 1),

onfirming that prestimulus alpha power suppressed BHA after control-

ing for the 1/f contribution to BHA estimates. 

Additionally, we replicated the interaction effect using four alter-

ative methods for sorting the recording sites into periodic and pe-

iodic sites (see Methods), including peak detection using linear re-

ression (F(2.18, 2272.95) = 51.678, p < 0.001; bin5 vs. bin1 in pe-

iodic sites: t = − 19.44, p < 0.001; in aperiodic sites: t = − 0.08, p = 1),

aussian fit (F(2.17, 2258.16) = 44.27, p < 0.001; bin5 vs. bin1 in pe-

iodic sites: t = − 18.56, p < 0.001; in aperiodic sites: t = − 2.17, p = 0.28),

OOOF (F(2.08, 2078.19) = 6.982, p < 0.001; bin5 vs. bin1 in periodic

ites: t = − 13.52, p < 0.001; in aperiodic sites: t = − 3.32, p = 0.010), and

BOSC (F(1.99,1385.40) = 19.94, p < 0.001; bin5 vs. bin1 in periodic

ites: t = − 15.09, p < 0.001; in aperiodic sites: t = − 4.16, p = 0.001). 

We further corroborated these results by using a reversed approach:

amely, we sorted epochs based on BHA magnitude (rather than alpha
3 
ower) and analyzed the difference in low-frequency power across BHA

ins (see Fig. 2 supplement for more detail). This approach revealed that

HA was negatively related to a range of low frequencies (4–40 Hz)

ncluding alpha and neighboring bands (i.e., alpha + ), suggesting that

unctional inhibition is not exclusive to a narrow-band alpha rhythm. 

Given that several previous studies observed that ongoing alpha

ower increases over the course of an experiment, possibly due to in-

reasing fatigue ( Benwell et al., 2017 , 2018 , 2019 ; Mathewson et al.,

009 ; van Dijk et al., 2008 ), it is important to rule out that the relation-

hip between alpha power and excitability is confounded by changes

n fatigue. First, we tested whether prestimulus alpha power in noise-

ocked trials was related to trial number (i.e., an indirect index of fa-

igue) using GLM: we found a significant positive correlation in periodic

ites (t(524) = 3.54, p < 0.001), consistent with previous studies (e.g.,

enwell et al., 2019 ), and a significant negative relationship in ape-

iodic sites (t(518) = − 4.87, p < 0.001), possibly reflecting a flattening of

he power spectrum (reduced alpha; Voytek et al., 2015 ) as a function

f trial number. Then, we used GLM to estimate the relationship be-

ween prestimulus alpha power and BHA in noise-locked epochs while

ccounting for trial number: we found a significant negative correla-

ion in periodic sites (t(524) = − 9.75, p < 0.001) and a significant positive

elationship in aperiodic sites (t(518) = 6.62, p < 0.001), even after con-

rolling for trial number (periodic sites: t(524) = − 6.42, p < 0.001; aperi-

dic sites: t(518) = 5.31, p < 0.001), suggesting the relationship between

ower and excitability was not confounded by changes in fatigue. 

In sum, these results suggest that reduced BHA is related to states

f strong alpha oscillations, but not the aperiodic signal in the same

requency range, consistent with functional inhibition. 

.2. Prestimulus alpha power and BHA are modulated by predictability 
ues 

In this study, patients were instructed to categorize auditory stimuli

/PA/ or /GA/) preceded by different visual predictability cues: tem-

oral predictability was manipulated using regular or random inter-

als between the visual cues and the target syllable (i.e., in temporally-

redictable blocks patients could predict target onset) whereas content
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Fig. 2. Correlation between prestimulus alpha power and BHA. 

A. Averaged power spectrum computed during the 1-s prestimulus window in 

noise-locked epochs, shown separately for bins of strongest (red) and weakest 

(blue) prestimulus alpha power for periodic sites (spectra normalized with aver- 

age power). B. Same as A for aperiodic sites. C. Averaged BHA computed during 

the 1-s prestimulus window in noise-locked epochs (70–150 Hz) separately for 

five bins sorted from weakest (blue) to strongest (red) prestimulus alpha power 

(normalized with the average across bins) for periodic sites. BHA decreases with 

increased alpha power in periodic sites. D. Same as C for aperiodic sites. BHA is 

unaffected by the aperiodic signal in the alpha frequency range. E. Anatomical 

map of the relationship between prestimulus alpha power and BHA power in 

periodic sites, estimated as the normalized difference in BHA between bins of 

strongest and weakest alpha power. The color and size of the dots are propor- 

tional to the magnitude of this difference. The map shows negative effects (BHA 

in bin 5 < BHA in bin 1); no significant positive effects were found. 
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t  
redictability was manipulated using contingencies between the visual

ues and the target syllable (i.e., in content-predictable blocks patients

ould predict target identity based on specific visual cues). These pre-

ictability cues were manipulated blockwise, resulting in four condi-

ions. Following the functional inhibition account, we hypothesized that

isual cues resulting in temporal and content predictions lead to de-

reased alpha power and increased BHA during the prestimulus window

n syllable-locked epochs, indicating increased excitability in anticipa-

ion of the task-relevant target stimuli. 

To test this hypothesis, we estimated prestimulus alpha power and

HA in syllable-locked epochs separately for each predictability con-

ition and site, and then used 2 × 2 repeated-measures mixed-effect

NOVAs with alpha or BHA as dependent variables, periodic/aperiodic

ites as the between-unit factor, and temporal and content predictabil-

ty conditions as within-unit factors. Note that “prestimulus ” in syllable-

ocked epochs refers to the window immediately prior to syllable onset.

We found a significant main effect of temporal predictability

n prestimulus alpha power (F(1929) = 99.460, p < 0.001), indicating

hat prestimulus alpha power was weaker in blocks when the stim-
4 
lus onset was predictable compared to blocks when it was not

temporally predictable vs. unpredictable: t = − 9.973, p < 0.001). We

ound a significant main effect of content predictability on prestim-

lus alpha power (F(1929) = 12.684, p < 0.001), indicating that pres-

imulus alpha power was weaker in blocks when the stimulus iden-

ity was predictable compared to blocks when it was not (content-

redictable vs. unpredictable: t = − 3.562, p < 0.001). There was a sig-

ificant interaction effect between temporal and content predictabil-

ty on prestimulus alpha power (F(1929) = 8.147, p = 0.004), indicat-

ng that prestimulus alpha power was weaker in blocks with both pre-

ictable stimulus identity and onset (temporally and content-predictable

s. temporally and content- unpredictable: t = − 9.912; p < 0.001) com-

ared to blocks with only predictable stimulus identity (temporally

nd content-predictable vs. temporally unpredictable and content-

redictable: t = − 4.520; p < 0.001) or blocks with only predictable stimu-

us onset (temporally and content-predictable vs. temporally predictable

nd content-unpredictable: t = − 9.324; p < 0.001). Critically, there was a

ignificant interaction between periodic/aperiodic sites and predictabil-

ty, indicating that the difference in prestimulus alpha power between

redictable and unpredictable conditions was bigger in periodic sites

temporal predictability: F(1929) = 27.28, p < 0.001; temporally pre-

ictable vs. unpredictable: t = − 10.648; p < 0.001; content predictabil-

ty F(1929) = 14.64, p < 0.001; content-predictable vs. unpredictable:

 = − 5.177; p < 0.001) compared to aperiodic sites (temporally predictable

s. unpredictable: t = − 3.390, p < 0.001; content-predictable vs. unpre-

ictable: t = 0.189, p = 0.850). 

In addition to prestimulus alpha power, we analyzed how pre-

ictability cues influence prestimulus BHA. We found a significant main

ffect of content predictability on prestimulus BHA (F(1929) = 19.031,

 < 0.001), indicating that prestimulus BHA was stronger in blocks

hen the stimulus identity was predictable compared to blocks when

t was not (F(1929) = 19.03, p < 0.001: content-predictable vs. unpre-

ictable: t = 4.362, p < 0.001). There was a non-significant trend for

emporal predictability (F(1929) = 2.868, p = 0.091; temporally pre-

ictable vs. unpredictable: t = 1.693, p = 0.091). Moreover, there was

o significant effect of the interaction between content and temporal

redictability (F(1929) = 0.003, p = 0.958) and of the interaction be-

ween periodic/aperiodic sites and predictability (temporal predictabil-

ty: F(1929) = 1.60, p < 0.206; content predictability: F(1929) = 1.676,

 < 0.196). 

In addition to alpha power and BHA, we analyzed how accuracy and

eaction times were influenced by predictability using separate 2 × 2

epeated-measures factorial ANOVAs. We found an effect of predictabil-

ty on neither accuracy (temporal predictability: F(1) = 0.585, p = 0.469;

ontent predictability: F(1) = 0.141, p = 0.718; interaction: F(1) = 1.815,

 = 0.220) nor RT (temporal predictability: F(1) = 2.078, p = 0.193; con-

ent predictability: F(1) = 0.104, p = 0.757; interaction: F(1) = 1.133;

 = 0.323), suggesting that these block-wise manipulations did not affect

ehavioral performance. 

To summarize, these results indicate that (content) predictions are

ssociated with a decrease of prestimulus alpha power specifically in

eriodic sites, and an increase in prestimulus BHA (before syllable on-

et), reflecting a state of increased excitability before the task-relevant

timulus. This pattern of results reflects a top-down modulation of alpha

ower and BHA, further supporting the functional inhibition account. 

.3. Prestimulus alpha power negatively correlates with poststimulus BHA 

Based on the functional inhibition account, we hypothesized that,

y setting the state of neuronal excitability, prestimulus alpha oscilla-

ions affect the processing of incoming stimulus information. To test

his hypothesis, we sorted epochs into five bins based on prestimu-

us alpha power and computed the BHA during sensory processing:

.e., in the 1-s poststimulus window ( “poststimulus ” in noise-locked

pochs refers to the window after the onset of the noise image). Note

hat, while prestimulus BHA reflects a measure of ongoing or “back-



L. Iemi, L. Gwilliams, J. Samaha et al. NeuroImage 247 (2022) 118746 

g  

r  

s  

o  

s  

w  

m  

1  

(  

b  

3  

i  

t  

1  

s  

1  

f  

“  

a  

n  

u  

b  

s  

f

 

w  

t  

s  

t  

w  

a  

f  

r  

(  

s  

a  

t  

i  

w  

w  

0  

R  

s  

u  

b  

i  

e

 

a  

s

2

 

s  

g  

w  

o

 

s  

i  

r  

(  

s  

w  

v  

(  

a  

R  

(  

3  

s  

5  

o  

5  

1  

i  

(  

R  

s

 

p  

r  

t  

t  

a

2
b

 

a  

h  

p  

s  

l  

B  

d  

f  

R  

K  

s  

e  

p  

i  

R  

p

 

t  

i  

w  

p  

F  

(  

s  

r  

(  

(  

(  

t  

r  

l  

t  

(

 

i  

a  

i  

i  

w  

p  
round ” excitability, poststimulus BHA additionally includes event-

elated, stimulus-induced activity, reflecting the excitation to external

timulation. In noise-locked epochs, we found a significant main effect

f alpha bin (F(3.50, 3641.44) = 24.87, p < 0.001), indicating that, across

ites, poststimulus BHA (bin 5 vs. bin 1: t = − 9.27, p < 0.001) decreased

ith prestimulus alpha power (i.e., before noise image onset). Further-

ore, we found a significant main effect of periodic/aperiodic sites (F(1,

042) = 67.67, p < 0.001), with higher poststimulus BHA in periodic sites

 t = 8.23, p < 0.001). Critically, we found a significant interaction effect

etween periodic/aperiodic sites and prestimulus alpha bins (F(3.562,

711.934) = 13.38, p < 0.001), indicating that, in periodic sites, BHA dur-

ng the processing of the noise image decreased with alpha power es-

imated during the window preceding the noise image (bin 5 vs. bin

: t = − 11.48, p < 0.001; Fig. 3 A). By contrast, in aperiodic sites, post-

timulus BHA was unrelated to prestimulus alpha power (bin 5 vs. bin

: t = − 1.66, p = 0.880). We obtained independent evidence for this ef-

ect when analyzing syllable-locked epochs. Note that “prestimulus ” and

poststimulus ” in syllable-locked epochs refer to the window before and

fter the onset of the syllable, respectively. Specifically, we found a sig-

ificant interaction effect between periodic/aperiodic sites and prestim-

lus alpha bins on poststimulus BHA (F(3.56, 3711.93) = 13.38, p < 0.001,

in 5 vs. bin 1 in periodic sites: t = − 5.15, p < 0.001; Fig. 3 B; in aperiodic

ites: t = − 0.89, p = 1) in syllable-locked epochs, suggesting that this ef-

ect generalizes across visual and auditory sensory stimulation. 

We also compared BHA time-series between bins of strongest and

eakest prestimulus alpha power separately for three regions of in-

erest (ROI) based on functional and anatomical localizers. In the vi-

ual ROI ( N = 37; Fig. 3 G), we found two significant negative clus-

ers, indicating that states of weak prestimulus alpha power coincided

ith weaker prestimulus BHA ( t = − 116.59, p < 0.001; from − 1 to 0.1 s)

nd were followed by weaker poststimulus BHA ( t = − 24.52, p = 0.013,

rom 0.35 to 0.6 s) in noise-locked epochs ( Fig. 3 H). These results were

eplicated during scene- ( Fig. 3 A supplement) and face-locked epochs

 Fig. 3 C supplement). Note that “prestimulus ” and “poststimulus ” in

cene-locked (or face-locked) epochs refer to the window before and

fter the onset of the scene (or face) image, respectively. In the audi-

ory ROI ( N = 55; Fig. 3 J), we found two significant negative clusters,

ndicating that states of weak prestimulus alpha power coincided with

eaker prestimulus BHA ( t = − 84.75, p < 0.001, from − 1 to 0.1 s) and

ere followed by weaker poststimulus BHA ( t = − 37.89, p < 0.001, from

.3 to 0.85 s) in syllable-locked epochs ( Fig. 3 K). In the somatomotor

OI ( N = 64; Fig. 3 M), we found two significant clusters, indicating that

tates of weak prestimulus alpha power coincided with weaker prestim-

lus BHA ( t = − 59.07, p = 0.002; from − 1 to − 0.45 s) and were followed

y weaker poststimulus BHA ( t = − 46.61, p = 0.002, from − 0.3 to 0.25 s)

n syllable-locked epochs ( Fig. 3 N). The ROI results suggest that this

ffect generalizes across visual, auditory and somatomotor areas. 

Taken together, these results show that states of strong prestimulus

lpha oscillations are followed by reduced poststimulus BHA across sen-

ory modalities and brain areas, consistent with functional inhibition. 

.4. Prestimulus alpha power positively correlates with reaction times 

Based on the functional inhibition account, we hypothesized that

tates of strong prestimulus alpha oscillations in task-relevant brain re-

ions are followed by behavioral changes (e.g., slower RTs). To test this,

e compared the RTs of the auditory discrimination task across states

f weak and strong prestimulus alpha power in syllable-locked epochs. 

We found a significant main effect of prestimulus alpha bins in

yllable-locked epochs on RTs (F(3.39, 3534.06) t = 62.60, p < 0.001),

ndicating that RTs increased with prestimulus alpha power in both pe-

iodic (bin 5 vs. bin 1: t = 11.94, p < 0.001; Fig. 3 E) and aperiodic sites

bin 5 vs. bin 1: t = 12.92, p < 0.001). The mean RT difference between

tates of strong and weak prestimulus alpha power in periodic sites

as 0.011 s (SEM = 27) with a maximum of 0.235 s in the caudal di-

ision of the middle frontal gyrus, while in aperiodic sites it was 0.018 s
5 
SEM = 23) with a maximum of 0.143 s in the postcentral gyrus. An

natomical map of the RT difference in periodic sites revealed that slow

Ts were preceded by strong pre-syllable alpha power across the brain

 Fig. 3 F). In addition, we found a significant interaction effect (F(3.39,

534.06) = 3.09, p = 0.021), suggesting a trend for slower RTs in the

trongest alpha bin in aperiodic sites (periodic vs. aperiodic sites for bin

: t = − 2.95, p = 0.067). Note that the effect of prestimulus alpha power

n RTs was present during syllable-locked epochs in both auditory (bin

 vs. bin 1: t(54) = 3.32, p = 0.002) and somatomotor ROIs (bin 5 vs. bin

: t(63) = 6.94, p < 0.001). By contrast, no significant effects were found

n noise- ( Fig. 3 I), scene- ( Fig. 3 B supplement) and face-locked epochs

 Fig. 3 D supplement) in the visual ROI ( p > 0.05), indicating that auditory

Ts were affected only by alpha power right before the target auditory

timulus. 

In sum, these results demonstrate that states of strong prestimulus al-

ha oscillations —as well as the aperiodic signal in the same frequency

ange —are followed by slower RTs. However, it should be noted that

his result alone does not constitute evidence for the functional inhibi-

ion account of alpha oscillations since it is not specific to oscillatory

ctivity. 

.5. The correlation between prestimulus alpha power and RT is mediated 
y poststimulus BHA 

There are two alternative accounts on the inter-relationship between

lpha oscillations, excitability, and behavior: based on the functional in-

ibition account, we hypothesized that the RT effect associated with

restimulus alpha oscillations (rather than the aperiodic signal) was

pecifically mediated by a modulation of poststimulus BHA in syllable-

ocked epochs; alternatively, prestimulus alpha oscillations may affect

HA and behavior via independent mechanisms without mediation. To

istinguish between these two accounts, we estimated the mediation ef-

ect by analyzing the trial-by-trial interrelation between alpha power,

Ts, and BHA using a causal step approach based on GLM ( Judd and

enny, 1981 ; Fig. 4 AC, see Methods). Specifically, this approach con-

ists in analyzing the correlation coefficients of four GLMs separately for

ach site: a linear regression with prestimulus alpha power predicting

oststimulus BHA; a linear regression with poststimulus BHA predict-

ng RTs; a linear regression with prestimulus alpha power predicting

Ts; and a multiple regression with both prestimulus alpha power and

oststimulus BHA predicting RTs. 

Confirming the results of the binning analysis ( Fig. 3 B), we found

hat prestimulus alpha was negatively correlated with poststimulus BHA

n periodic sites (t(524) = − 3.569, p < 0.001; a < 0 in Fig. 4 A), consistent

ith functional inhibition, whereas it was positively correlated with

oststimulus BHA in aperiodic sites (t(518) = 2.22, p = 0.027) ( a > 0 in

ig. 4 B), consistent with a change in the offset of the power spectrum

i.e., upward shift at all frequencies). In addition, we found that post-

timulus BHA was negatively correlated with RTs across all sites (pe-

iodic: t(524) = − 2.03, p = 0.043; aperiodic: t(518) = − 5.85, p < 0.001)

 b > 0 in Fig. 4 B), even after controlling for prestimulus alpha power

periodic: t(524) = − 1.98, p = 0.048; aperiodic: t(518) = − 5.92, p < 0.001)

b’ < 0 in Fig. 4 B). Moreover, we found that prestimulus alpha was posi-

ively correlated with RTs in periodic (T(524) = 7.33, p < 0.001) and ape-

iodic sites (T(518) = 11.18, p < 0.001) (c in Fig. 4 B), even after control-

ing for poststimulus BHA (periodic: t(524) = 6.77, p < 0.001; aperiodic:

(518) = 10.93, p < 0.001; c’ > 0 in Fig. 4 B), suggesting partial mediation

see Methods). 

To test for mediation, we estimated the indirect effect by comput-

ng the reduction in the effect of prestimulus alpha power on RTs after

ccounting for poststimulus BHA. We found a significant indirect effect

n periodic sites (t(524) = 3.41, p < 0.001), supporting mediation, but not

n aperiodic sites (t(518) = 0.26, p = 0.795; c-c’ in Fig. 4 D). This effect

as indeed larger in sites with periodic activity (unpaired t(1042) = 3.22,

 = 0.001). An anatomical map of the indirect effect in periodic sites re-
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Fig. 3. Correlation between prestimulus alpha power, poststimulus BHA, and reaction times. 

A/B. Averaged poststimulus BHA, shown separately for five bins sorted from weakest (blue) to strongest (red) prestimulus alpha power in periodic sites in noise-locked 

and syllable-locked epochs, respectively. In periodic sites, BHA after the onset of the noise image and the syllable decreases with prestimulus alpha power, consistent 

with functional inhibition. The error bars represent SEM across sites. C . Anatomical map of the relationship between prestimulus alpha power and poststimulus BHA 

in periodic sites, estimated as the normalized difference between bins of strongest and weakest alpha power. The color and size of the dots are proportional to the 

experimental effect. The map shows negative effects (BHA in bin 5 < BHA in bin 1) in noise-locked epochs. No significant positive effects were found. D/E. Same 

as in A/B for RT in noise- and syllable-locked epochs, respectively. RT increases with prestimulus alpha power in syllable-locked epochs, but not in noise-locked 

epochs. F . Same as in C for RT. The map shows positive effects (RT in bin 5 > RT in bin 1) in syllable-locked epochs. No significant negative effects were found. 

G. Anatomical map of the visual ROI, including periodic sites that were functionally and anatomically related to visual cues. H. BHA time-course shown separately 

for bins of weakest (blue) and strongest (red) prestimulus alpha power for noise-locked epochs in the visual ROI. Bold horizontal black lines indicate significant 

differences using cluster permutation testing. States of strong prestimulus alpha power are related to a BHA reduction during the prestimulus and poststimulus 

windows, consistent with functional inhibition. I. Averaged RT, shown separately for the weakest (blue) and strongest (red) bin of prestimulus alpha power in 

noise-locked epochs in the visual ROI. RT is affected by alpha power before the syllable in both auditory and somatomotor areas, but not before the noise image 

in visual areas. J. Same as G for the auditory ROI, including periodic sites that were functionally and anatomically related to target syllables. K/L. Same as H/I for 

syllable-locked epochs in the auditory ROI. M . Same as G for the somatomotor ROI, including periodic sites that were functionally and anatomically related to motor 

responses. N/O. Same as H/I for syllable-locked epochs in the somatomotor ROI. 

6 
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Fig. 4. Mediation between prestimulus alpha power, poststim- 

ulus BHA, and reaction time. 

A. Schematic illustration of the causal path mediation analy- 

sis using four GLMs, characterizing the interrelation between 

prestimulus alpha oscillations (i.e., the independent variable), 

RTs (i.e., the dependent variable), and poststimulus BHA (i.e., 

the mediator) in syllable-locked epochs: a represents the rela- 

tionship of independent variable to the mediator, b the media- 

tor to dependent variable, c the independent variable to depen- 

dent variable, b’ the mediator to dependent variable adjusted 

for independent variable, and c’ the independent variable to 

dependent variable adjusted for mediator. The variables and 

the relationships among them are represented by rectangles 

and lines, respectively. B . Averaged effects of the causal path 

mediation analysis showing the interrelation between prestim- 

ulus alpha power, poststimulus BHA, and RTs, shown sepa- 

rately for periodic (blue) and aperiodic sites (green). These ef- 

fects are estimated using the averaged zero-order (a–c) and 

partial GLM coefficients (b’/c’) and their comparison (c-c’) 

based on causal path mediation analysis in (A). The error bars 

represent SEM across sites. C. Theoretical mediation model in 

which the independent variable leads to the dependent vari- 

able via an indirect effect through the mediator (red path). 

D. Averaged indirect effect reflecting the mediation between 

prestimulus alpha power and RT via poststimulus BHA, shown 

separately for periodic (blue) and aperiodic sites (green). In 

periodic sites, the effect of prestimulus alpha power on RTs is 

significantly reduced after accounting for poststimulus BHA (c- 

c’ > 0), demonstrating an indirect effect, consistent with func- 

tional inhibition. In aperiodic sites, the relationship between 

prestimulus alpha power and RTs is unaffected by poststim- 

ulus BHA (c-c‘ = 0), suggesting no indirect effect. E . Anatom- 

ical map of the magnitude of the indirect effect in periodic 

sites. The color and size of the dots are proportional to the 

experimental effect. 
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ealed this effect occurred across several sites with maxima in the pars

riangularis and the rostral division of the middle frontal gyrus ( Fig. 4 E).

Together, these findings support the functional inhibition account by

emonstrating that the modulation of poststimulus excitability mediates

he behavioral effects of alpha oscillations, rather than the aperiodic

ignal in the same frequency range. 

.6. Prestimulus alpha power negatively correlates with neural stimulus 
eature encoding 

Based on the functional inhibition account, we hypothesized that the

ffect of prestimulus alpha power on poststimulus neuronal excitabil-

ty may affect how stimulus features are encoded in BHA estimates in

yllable-locked epochs. Specifically, we tested whether prestimulus al-

ha power affects (1) decoding accuracy, which reflects sensory pre-

ision or (2) decoding confidence, which reflects the strength of sen-

ory encoding. To test this, we used “spatial decoding ” ( Gwilliams and

ing, 2020 ): separately for each electrode, we predicted syllable iden-

ity (labels: /ga/ vs. /pa/) by fitting logistic regression decoders on

he single-trial temporal BHA patterns as input (see Fig. 5 B supple-

ent for a comparison with the low-passed signal). First, decoder ac-

uracy was estimated as the similarity between the probabilistic predic-

ion (normalized distance from the hyperplane) and true labels using

he area under the curve (AUC). Second, stimulus encoding strength or

ecoder confidence was estimated as the maximum probabilistic pre-

iction, regardless of its accuracy (i.e., whether or not it matched the

rue label). Across sites there was a significant positive correlation be-

ween decoder accuracy and confidence averaged over trials (Spear-

an rho = 0.15, p < 0.001), demonstrating that sites which encode syl-

able identity more reliably also tend to exhibit higher confidence in

hose predictions. Moreover, to understand how these decoder metrics

ere related to the participant’s behavior on a trial-by-trial basis, we
7 
orrelated RTs with single-trial accuracy (binarized into correct and in-

orrect) and confidence of the decoder predictions using GLM for each

ite. Across sites there was a significant negative correlation between

Ts and both decoder accuracy (t(1043) = − 2.75, p = 0.006) and confi-

ence (t(1043) = − 3.45, p < 0.001), indicating that higher decoder accu-

acy and confidence were related to faster RTs. 

Next, we tested whether prestimulus oscillatory state influences de-

oded neural stimulus representations. For each site, we computed

ingle-trial probabilistic estimates for each syllable based on BHA tem-

oral patterns. Then, we sorted the trials based on the 1-s prestimulus

lpha power (in syllable-locked epochs) and estimated decoder accu-

acy and confidence using these probabilistic estimates separately for

ach bin. We compared decoder accuracy (AUC) across alpha bins in

eriodic and aperiodic sites and found no significant effects ( p > 0.05;

ig. 5 AB), suggesting that the precision of neural stimulus represen-

ation/encoding was unlikely affected by prestimulus alpha power.

e also compared decoder confidence across alpha bins in periodic

nd aperiodic sites and found a significant interaction effect (F(3.96,

125.61) = 2.59, p = 0.036), such that stimulus encoding strength nom-

nally decreased with alpha power in periodic sites (bin 5 vs. bin 1:

 = − 1.89, p = 1; Fig. 5 C), while it nominally increased in aperiodic sites

bin 5 vs. bin 1: t = 0.87, p = 1; Fig. 5 D), although these post-hoc ef-

ects were not significant after correcting for multiple comparisons. Ad-

itionally, this interaction effect was significant in trials with correct

redictions (F(4.00, 4166.49) = 3.54, p = 0.007) and trending toward

ignificance in trials with incorrect predictions (F(3.99, 4148.44) = 2.06,

 = 0.084), suggesting that strong prestimulus alpha power in periodic

ites decreased stimulus encoding strength (and vice versa in aperiodic

ites) regardless of the accuracy of stimulus encoding. An anatomical

ap of the effect on confidence in periodic sites revealed a widespread

eduction following states of strong prestimulus alpha power across the

rain ( Fig. 5 E). 
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Fig. 5. Correlation between prestimulus alpha power and neural stimulus de- 

coding. 

A . Averaged normalized decoder accuracy (AUC) for decoding syllable identity 

from BHA shown separately for five bins sorted from weakest (blue) to strongest 

(red) prestimulus alpha power in periodic sites. The error bars represent SEM 

across sites. B. Same as A in aperiodic sites. Decoder accuracy is affected by 

prestimulus alpha power in neither periodic nor aperiodic sites. C. Same as A 

for decoder confidence. D. Same as C for aperiodic sites. Decoder confidence 

decreases with prestimulus alpha power in periodic sites whereas it increases in 

aperiodic sites. E. Anatomical map of the magnitude of the effect of the decoder 

confidence in periodic sites. The color and size of the dots are proportional to 

the experimental effect. The map shows negative effects (confidence in bin 5 

< confidence in bin 1). No significant positive effects were found. F. Model of 

the relationship between alpha oscillations and decoding performance. In a two- 

dimensional activation space, each trial is characterized by the activity values 

estimated at two time points from a single electrode (i.e., activation point). Re- 

sponse distributions are shown by purple (for stimulus A) and orange circles (for 

stimulus B) with center and radius representing response mean and variability, 

respectively. Learning a linear classifier (A vs B) is equivalent to learning the 

hyperplane (diagonal line) that best separates the two distributions: if distance 

between an activation point and the hyperplane > 0, then the classifier predicts 

“A ”, otherwise “B ”. This model assumes that states of low excitability indexed 

by strong alpha oscillations are related to reduced distributions’ mean (arrow), 

and variability, resulting in a decrease of the absolute distance of the activation 

points from the hyperplane (i.e., lower decoder confidence), while leaving the 

distributions’ overlap (i.e., decoder accuracy) unaffected. 

 

o  

p  

b  

h  

r  

a  

B  

c  

p  

t  

o  

t  

i  

d  

r  

f  

p  

u

 

r  

d  

p  

o  

a  

p  

s  

(  

p  

t  

 

d  

s

2

 

c  

i  

f  

J  

s  

o  

m  

n  

i

 

l  

t  

i  

a  

e  

<  

t  

i  

s  

i  

p

 

w  

p  

(  

e  

w  

m  

i  

8 
We also tested whether, in periodic sites, the effects of alpha power

n decoder accuracy and confidence (i.e., bin 5 vs. bin 1) were de-

endent on two site-specific characteristics: the negative relationship

etween ongoing alpha power and BHA (i.e., index of functional in-

ibition), and overall decoder accuracy. We found no across-site cor-

elation ( p > 0.05) between overall decoder accuracy and the effects of

lpha power on decoder accuracy and confidence, or between the alpha-

HA relationship and the effect on decoder accuracy, indicating that de-

oder accuracy was unrelated to the confidence effect and to prestimulus

ower. By contrast, we found a significant positive across-site correla-

ion between the alpha-BHA relationship and the effect of alpha power

n decoder confidence (Spearman rho = 0.103, p = 0.019), suggesting

hat, during states of strong prestimulus alpha power, the stronger the

nhibition associated with alpha power, the lower the decoder confi-

ence. We corroborated this finding in sites with a negative alpha-BHA

elationship, reflecting functional inhibition: we found a significant ef-

ect of alpha bins on decoder confidence (F(3.891, 1338.467) = 3.69,

 = 0.006), indicating that decoder confidence decreased with prestim-

lus alpha power (bin 5 vs. bin 1: t = − 2.86, p = 0.039). 

It could be argued that, due to their relatively strong signal-to-noise

atio, states of strong alpha oscillations act as a source of noise (e.g.,

egrading the signal at other frequencies), resulting in lower decoder

erformance without affecting neural stimulus representations. To rule

ut this alternative account, we tested whether overall decoder accuracy

nd/or confidence were lower in periodic sites, which have stronger al-

ha power compared to aperiodic sites ( Fig. 1 supplement). The results

howed that periodic and aperiodic sites differed in neither accuracy

unpaired t(1042) = 1.12, p = 0.264) nor confidence (t(1042) = 0.750,

 = 0.453), suggesting that differences in alpha oscillatory activity be-

ween sites are unlikely to act as a noise source for decoder performance.

In sum, these findings extend the functional inhibition account by

emonstrating that states of strong prestimulus alpha power reduce the

trength, but not the precision, of neural stimulus representations. 

.7. Baseline shift of alpha oscillations affects ERPs but not BHA 

Finally, we assessed if the observed relationship between alpha os-

illations and BHA is determined by mechanisms other than functional

nhibition (i.e., baseline shift of non-zero-mean oscillations) that af-

ect event-related potentials (ERP; Nikulin et al., 2007 ; Mazaheri and

ensen, 2008 ; Iemi et al., 2019 ). Baseline shift predicts that the relation-

hip between alpha power and neural signals depends on the direction

f the baseline shift (which can also be viewed as polarity) of non-zero-

ean oscillations ( Fig. 6 AB), whereas functional inhibition predicts a

egative relationship between alpha power and neural signals (reflect-

ng excitability) regardless of oscillatory polarity 

To test for these mechanisms, we quantified the polarity of the base-

ine shift using the baseline shift index (BSI), which reflects the correla-

ion between the alpha power envelope and the low-passed EEG signal

n continuous data. A positive polarity (BSI > 0) indicates that strong

lpha power is correlated with an increase of the low-passed signal, as

xpected for positive-mean oscillations, whereas a negative polarity (BSI

 0) indicates that strong alpha power is correlated with a decrease of

he low-passed signal, as expected for negative-mean oscillations. We

dentified 323 sites with a negative oscillatory mean ( Fig. 6 CE) and 202

ites with a positive oscillatory mean ( Fig. 6 DF) using the baseline shift

ndex (BSI), and analyzed how prestimulus oscillations with different

olarities affect ERP and BHA in noise-locked epochs. 

We found a significant interaction effect between polarity (i.e., sites

ith positive or negative mean) and prestimulus alpha bin on the

restimulus (F(1.79, 935.91) = 120.45, p < 0.001) and poststimulus ERP

F(1.67, 873.44) = 139.55, p < 0.001; Fig. 6 GH). Compared to the weak-

st alpha bin, the prestimulus ERP baseline of the strongest alpha bin

as characterized by a more negative voltage in sites with a negative

ean (bin 5 vs. bin 1: t = − 19.48, p < 0.001), and more positive voltage

n sites with a positive mean (bin 5 vs. bin 1: t = 10.09, p < 0.001). Fur-
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Fig. 6. Correlation between alpha power and BHA accounting for baseline shift 

of non-zero-mean oscillations 

A/B. Neural oscillations are modelled as sinusoidal waveforms (opaque lines) 

varying asymmetrically around a non-zero mean. Unlike zero-mean oscillation, 

trial averaging of non-zero-mean oscillations does not eliminate non-phase- 

locked oscillations in the prestimulus window, resulting in an ERP prestimu- 

lus baseline with an offset (dotted lines). During event-related desynchroniza- 

tion (ERD) by stimulus onset (vertical line), the averaged signal gradually ap- 

proaches the zero line of the signal. When the poststimulus signal is corrected 

with the prestimulus non-zero baseline, a slow shift of the ERP signal appears 

(thick lines), mirroring the ERD. The baseline-shift mechanism predicts that: 

(1) the polarity of the non-zero mean baseline determines the directionality 

of the effect of prestimulus oscillations on the ERP signal (in raw values); (2) 

the poststimulus ERP signal is amplified (in absolute values) during states of 

strong prestimulus alpha power. C/D. Anatomical map of the magnitude of the 

baseline-shift-index (BSI) averaged across the alpha band shown separately for 

periodic sites with negative- and positive-mean alpha oscillations, respectively. 

E/F. Magnitude of the baseline-shift-index (BSI) represented for frequencies be- 

tween 1 and 50 Hz, separately for sites with negative- and positive-mean alpha 

oscillations, respectively. G/H. ERP magnitude averaged across the 1-s post- 

stimulus window, shown separately for five bins sorted from weakest (blue) to 

strongest (red) prestimulus alpha power in periodic sites with negative and pos- 

itive mean oscillations, respectively. The estimates were normalized, first, with 

the average across bins and, second, with the magnitude of the weakest bin, 

which is assumed to best reflect the zero line of the signal. The relationship be- 

tween prestimulus alpha power and poststimulus ERP (in raw values) depends 

on the non-zero-mean property of alpha oscillations. States of strong prestimulus 

alpha power results in ERP amplification (in absolute values), consistent with 

baseline shift. The error bars represent SEM across sites. I/J. Averaged poststim- 

ulus BHA shown separately for five bins sorted from weakest (blue) to strongest 

(red) prestimulus alpha power in periodic sites with negative and positive mean 

oscillations, respectively (normalized with the average across bins). There is a 
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9 
hermore, compared to the weakest alpha bin, the ERP averaged over

he poststimulus window of the strongest alpha bin was characterized

y a more positive voltage shift in sites with a negative mean (bin 5 vs.

in 1: t = 23.99, p < 0.001; Fig. 6 G), and more negative voltage shift in

ites with a positive mean (bin 5 vs. bin 1: t = − 8.39, p < 0.001; Fig. 6 H).

n other words, states of strong prestimulus alpha power are related to

 stronger non-zero ERP baseline, which is followed by an ERP ampli-

cation in the poststimulus window, consistent with a baseline shift of

on-zero-mean alpha oscillations. 

By contrast, we found a significant main effect of prestimulus al-

ha bins on both prestimulus (F(2.11, 1104.11) = 99.79, p < 0.001) and

oststimulus BHA (F(3.51, 1834.91) = 28.93, p < 0.001), indicating that

HA decreased with prestimulus alpha power in sites with both a neg-

tive (bin 5 vs. bin 1 for prestimulus BHA: t = − 12.78, p < 0.001; post-

timulus BHA: t = − 7.85, p < 0.001; Fig. 6 I), and positive mean (prestim-

lus BHA: t = − 12.86, p < 0.001; poststimulus BHA: t = − 6.40, p < 0.001;

ig. 6 L), consistent with functional inhibition. Indeed, there was no sig-

ificant interaction effect between polarity and prestimulus alpha bin

n prestimulus or poststimulus BHA ( p > 0.05). In addition, we found a

ignificant main effect of polarity on both prestimulus (F(1, 523) = 8.48,

 = 0.004) and poststimulus BHA (F(1, 523) = 7.30, p = 0.007), indicating

hat sites with a negative oscillatory mean were characterized by overall

reater BHA (prestimulus BHA: t = 2.91, p = 0.004; poststimulus BHA:

 = 2.70, p = 0.007). We replicated these effects in a control analysis us-

ng the Amplitude Fluctuation Asymmetry Index (AFAI: Mazaheri and

ensen, 2008 ) to identify sites with a negative and positive asymmetries

n oscillatory peaks ( Fig. 6 supplement). In sum, these results demon-

trate that the negative relationship between alpha power and BHA is

onsistent with functional inhibition, rather than baseline shift of non-

ero mean alpha oscillations. 

. Discussion 

.1. Simultaneous relationship between alpha oscillations and excitability 

We hypothesized that alpha oscillations reflect functional inhibition,

egulating the excitability state of the neural system. To test this, we

nalyzed the relationship between alpha power and BHA which is con-

idered a proxy for neuronal ensemble excitability. Though BHA is often

eferred to as “high gamma, ” it is physiologically distinct from narrow-

and gamma oscillations reflecting rhythmic activity between 30 and

0 Hz. Initially thought to reflect net local neuronal firing —i.e., mul-

iunit activity ( Manning et al., 2009 ; Nir et al., 2007 ; Ray et al., 2008 ;

ay and Maunsell, 2011 ; Rich and Wallis, 2017 ; Whittingstall and Lo-

othetis, 2009 ), it was shown more recently that BHA mainly indexes

alcium-dependent dendritic processes that, albeit correlated with firing

robability, are separable from it ( Leszczy ń ski et al., 2020 ). This sug-

ests that in relative terms, BHA is a more direct measure of neuronal ex-

itability. There is also indication that BHA signals may volume-conduct

ver greater distances than multiunit activity signals ( Leszczy ń ski et al.,

020 ), making BHA a more useful measure of neuronal ensemble ex-

itability. Our findings confirmed the functional inhibition account by

howing that states of strong ongoing oscillations in the alpha + band

i.e., alpha and neighboring frequencies) were related to reduced BHA,

ndicating a state of low neuronal excitability. 

These findings corroborate studies reporting that strong alpha os-

illations are related to reduced neuronal firing in animal models

 Haegens et al., 2011 ; Watson et al., 2018 ) and reduced fMRI BOLD

ignal in humans ( Chapeton et al., 2019 ; Mayhew et al., 2013 ). Addi-

ionally, they are also consistent with numerous studies suggesting a

egative relationship between low-frequency power, including the al-
egative relationship between prestimulus alpha power and poststimulus BHA 

egardless of the polarity of the oscillatory mean, consistent with functional in- 

ibition. 
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a  
ha band, and high-frequency power, including BHA, during sensory,

otor and task processing. Specifically, increased high-frequency power

o-occurred with decreased low-frequency power after the presenta-

ion of visual ( Lachaux et al., 2005 ; Martin et al., 2019 ; Nir et al.,

007 , 2017 ; Rodriguez et al., 2004 ; Fisch et al., 2009 ; Miller et al.,

014 ; Podvalny et al., 2015 ; Fries et al., 2001 ; Scheeringa et al., 2011 ;

wang and Andersen, 2011 ; Rickert et al., 2005 ; Lundqvist et al., 2020 ;

aegens et al., 2021 ), auditory ( de Pesters et al., 2016 ; Potes et al.,

014 ), and somatosensory stimuli ( Fontolan et al., 2014 ), and during

otor responses ( Crone et al., 1998 ; de Pesters et al., 2016 ; Jiang et al.,

020 ; Miller et al., 2007 ) and task/cognitive processing ( Hwang and An-

ersen, 2011 ). Several M/EEG studies observed a negative relationship

etween low-frequency power decrease and, what is reported as, nar-

owband gamma increase ( Bauer et al., 2006 ; Kloosterman et al., 2019 ;

an Ede et al., 2014 ; Wyart and Tallon-Baudry, 2009 ); though it remains

nclear whether this high-frequency signal reflects genuine oscillatory

ctivity or broadband power. Importantly, the negative relationship be-

ween low- and high-frequency power was recently linked to changes in

ognitive function ( Nir et al., 2007 ; Proskovec et al., 2019 ; Tran et al.,

020 ; Voytek et al., 2015 ). 

In this study, rather than analyzing how BHA and alpha power

hange as a function of sensory/task processing, we systematically es-

imated the trial-by-trial correlation between these signals in intracra-

ial human recordings. First, we analyzed a wide range of brain areas

panning from primary sensory cortices to frontal regions, by which we

vercome some limitations in previous studies estimating neural signals

n a limited set of brain areas. Our findings show a negative relationship

etween alpha power and BHA occurring across the whole brain, consis-

ent with the idea that functional inhibition reflects a general property

f alpha oscillations. 

Second, some investigators have questioned whether the negative

orrelation between low- and high-frequency power reflects an oscil-

atory modulation driven by the alpha rhythm or whether it is due to

 change of the aperiodic signal ( McNair et al., 2019 ; Podvalny et al.,

015 ; Voytek et al., 2015 ). Note that the power spectrum contains not

nly oscillatory/periodic activity, but also an aperiodic signal (1/f back-

round noise), parametrized by an offset and a slope ( Donoghue et al.,

020 ). While an increase in the offset of the aperiodic signal may boost

ower at all frequencies, an increase in aperiodic slope may manifest

s a simultaneous increase in low-frequency power and a decrease in

igh-frequency power. Critically, sorting trials by the power in a pre-

efined frequency band (e.g., alpha) in different bins has been shown

o affect both the slope and offset of the aperiodic signal ( Iemi et al.,

019 ). Therefore, it is possible that the reduced BHA during states of

trong alpha power can be explained by a steeper slope of the aperiodic

ignal. Moreover, the aperiodic signal is thought to reflect a physiologi-

al function ( Voytek et al., 2015 ) that is, at least partially, independent

rom the periodic signal. Accordingly, distinguishing between an oscilla-

ory or aperiodic modulation driving the alpha-BHA relationship is crit-

cal for understanding the underlying neural mechanisms. In periodic

ites, containing both periodic/oscillatory and aperiodic activity, it is

ot possible to distinguish between the oscillatory and aperiodic modu-

ations because we expect the same negative relationship between alpha

ower and BHA, regardless of the underlying modulation. By contrast,

n aperiodic sites, we can make separate predictions for the oscillatory

nd aperiodic modulations. If, on the one hand, the alpha-BHA rela-

ionship reflects an aperiodic modulation (i.e., change of the aperiodic

lope), then we expect a negative relationship in aperiodic sites: namely,

tates of strong aperiodic power in the alpha range may be related to a

teeper aperiodic slope, resulting in lower BHA. If, on the other hand,

he alpha-BHA relationship reflects an oscillatory modulation, then we

xpect a positive relationship in aperiodic sites: namely, states of strong

periodic power in the alpha range may be related to a higher offset of

he power spectrum (i.e., upward shift at all frequencies), resulting in

igher BHA. Our results are consistent with an oscillatory modulation,

howing a negative relationship between BHA and alpha power in peri-
10 
dic sites, and a positive relationship in aperiodic sites (see GLM results

n Fig. 4 B). It should be noted that the sorting into periodic and ape-

iodic sites may have suffered from some methodological limitations,

hich, however, did not substantially affect our conclusions. Note that

he sorting was based on the peak detection in the trial-averaged pres-

imulus power spectrum because it provides a more accurate spectral

stimate than that of individual trials, where, due to lower signal-to-

oise ratio, it can be difficult to distinguish whether a peak reflects spu-

ious or genuine oscillatory activity. Accordingly, the power spectrum

f some trials in sites designated as aperiodic may actually contain gen-

ine alpha-band periodic activity. Furthermore, some periodic sites may

ave been mislabeled as aperiodic, when, for example, due to the 1/f

ignal, peaks in delta and theta power conceal smaller peaks in the alpha

ange. To address this issue, we replicated the results using alternative

eak detection methods which account for the 1/f signal (see Meth-

ds). Together, these limitations may increase the similarity between

eriodic and aperiodic sites —however, this potential conflation would

ork against confirming our hypothesis of functional inhibition, as this

ypothesis required demonstrating different effects of alpha in periodic

nd aperiodic sites. As our results support an interaction between peri-

dic/aperiodic sites and alpha power bins, we believe that the method

e used is sufficient into sorting sites with predominantly periodic and

periodic activity. 

Third, we analyzed the relationship between BHA and power in a

ange of low frequencies (2–40 Hz). Thus, we overcome a limitation

f some previous studies which only focused on a predefined frequency-

and (e.g., alpha: Potes et al., 2014 ). We found that strong BHA occurred

uring states of weak power in the alpha + band (i.e., alpha and neigh-

oring frequencies including beta and theta), suggesting that the func-

ional inhibition account is not exclusive to a narrowband alpha rhythm.

hile it is possible that frequencies around the alpha band may reflect

 similar function, it is important to highlight that the relationship be-

ween ongoing power and BHA was more prominent and sustained in

ime within the alpha band ( Fig. 2 ). Additionally, it is possible that anal-

sis techniques such as frequency smoothing may have contributed to

he spreading of the effect beyond the alpha band. Finally, we found that

ngoing delta-band power ( < 4 Hz) was unrelated to BHA ( Fig. 2 FG),

uggesting that the relationship between BHA and low-frequency power

as unlikely determined by a change of the slope of the aperiodic signal

ffecting all low frequencies (including delta). This finding is particu-

arly important as it further demonstrates that the relationship between

lpha oscillations and BHA reflects a true oscillatory modulation. 

Fourth, we analyzed how predictability cues influenced prestimulus

lpha power and BHA in syllable-locked epochs. We found that pre-

ictions decreased the power of alpha oscillations (in periodic sites) be-

ore syllable onset, consistent with previous studies ( Rohenkohl and No-

re, 2011 ; van Diepen et al., 2015 ; but see Mayer et al., 2016 ). Addition-

lly, we found that predictions increased prestimulus BHA. We propose

his pattern of results — decreased alpha power and increased BHA —

eflects increased excitability in anticipation of the task-relevant target

timulus induced by predictions. Accordingly, this finding demonstrates

 task-related/top-down modulation of alpha oscillations and BHA in

ine with the functional inhibition hypothesis. 

In sum, these findings confirm the functional inhibition account and

xtend previous work by establishing the anatomical, temporal, and

pectral characteristics of the relationship between alpha oscillations

nd neuronal excitability. 

.2. Relationship between prestimulus alpha power and poststimulus 
xcitability 

Based on the functional inhibition account, we hypothesized that

tates of strong prestimulus alpha oscillations are followed by low neu-

onal excitability during stimulus processing (i.e., in the poststimulus

indow). We found that states of strong alpha power were followed by

 reduction in BHA during both the processing of visual and auditory
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timuli, as well as across sensory and non-sensory regions, suggesting

hat this phenomenon reflects a general property of alpha oscillations.

hese results are consistent with functional inhibition and with previ-

us studies showing that ongoing alpha power is negatively correlated

ith the BOLD signal in sensory and non-sensory areas ( Becker et al.,

008 ; Scheeringa et al., 2011 ; Walz et al., 2015 ) and early ERP compo-

ents ( Baslar and Stampfer, 1985 ; Becker et al., 2008 ; Iemi et al., 2019 ;

asiukaitis and Hakerem, 1988 ; Rahn and Ba ş ar, 1993 ; Roberts et al.,

014 ). It is important to note the inhibitory effect of alpha oscillations

as somewhat weaker during the early peak of the poststimulus BHA

esponse in sensory ROIs. This is possibly due to a ceiling effect on BHA

stimates driven by supra-threshold stimulation, or to the sparse elec-

rode coverage of primary visual and auditory areas, preventing us from

bserving potential effects on early sensory responses. 

By contrast, several previous studies have revealed a mixed pat-

ern of results, showing a positive ( Barry et al., 2000 ; Baslar and

tampfer, 1985 ; Becker et al., 2008 ; Dockree et al., 2007 ; Jasiukaitis and

akerem, 1988 ; Mo et al., 2011 ; Roberts et al., 2014 ) or non-linear re-

ationship ( Kloosterman et al., 2019 ) between ongoing alpha power and

ther measures of poststimulus excitability (e.g., neuronal firing, non-

nvasive high-frequency power, and late ERP components). One pos-

ible explanation for these mixed results is that this relationship may

epend on mechanisms other than functional inhibition. For example,

RPs are thought to reflect (1) stimulus-related neural activation, which

s presumably suppressed during functional inhibition, and (2) baseline

hift of non-zero-mean oscillations ( Nikulin et al., 2007 ; Mazaheri and

ensen, 2008 ), which results in ERP amplification during states of strong

restimulus alpha power ( Iemi et al., 2019 ). Accordingly, to rule out

he possibility that the observed relationship between alpha oscillations

nd BHA was due to baseline shift, we estimated how BHA and ERPs

ere related to prestimulus alpha power separately for periodic sites

ith positive and negative oscillatory mean within the alpha band. We

ound that states of strong prestimulus negative-mean alpha oscillations

ere related to a more negative prestimulus ERP baseline and, in turn,

 more positive poststimulus ERP signal. By contrast, states of strong

restimulus positive-mean alpha oscillations were related to a more

ositive prestimulus ERP baseline and, in turn, a more negative post-

timulus ERP signal. In other words, states of strong prestimulus power

ere associated with a non-zero prestimulus ERP baseline, resulting in

n amplification of the poststimulus ERP (in absolute value), consis-

ent with baseline shift and with previous studies using non-invasive

lectrophysiology ( Becker et al., 2008 ; Iemi et al., 2019 ). These results

emonstrate that baseline shift contributes to the generation of the ERP

 Nikulin et al., 2007 ). By contrast, BHA decreased with prestimulus al-

ha power regardless of the polarity of the oscillatory mean. Therefore,

e conclude that the alpha-BHA relationship reflects an interaction be-

ween oscillatory activity and excitability consistent with functional in-

ibition, rather than a consequence of baseline shift. 

Finally, it should be noted that, to maximize the number of trials

or within-subject analysis, we used all trials regardless of whether or

ot the stimulus onset or content could be predicted based on the pre-

eding cues (see Methods). While ongoing fluctuations in prestimulus

ctivity before the (task-irrelevant) noise image reflect changes in inter-

al processes including attention, arousal, or motivation, fluctuations

efore the other (task-relevant) visual cues and the target syllable may

lso reflect changes in predictability. Future studies are necessary to dif-

erentiate how these different endogenous processes modulate ongoing

eural activity and behavior. 

.3. Relationship between prestimulus alpha power and behavior 

Based on the functional inhibition account, we hypothesized that

restimulus alpha oscillations modulate task performance (e.g., RTs

n the auditory discrimination task). We found slower RTs following

tates of strong prestimulus alpha power estimated in the window be-

ore the task-relevant target stimulus (i.e., in syllable-locked epochs)
11 
cross both periodic and aperiodic sites, including auditory and somato-

otor regions. It is important to note that previous studies reported

oth positive ( Bollimunta et al., 2008 ; Bompas et al., 2015 ; Kelly and

’Connell, 2013 ; Kirschfeld, 2008 ; Lou et al., 2014 ; Mazaheri et al.,

014 ; Min and Herrmann, 2007 ; Paoletti et al., 2019 ; van den Berg

t al., 2016 ; Zhang et al., 2008 ), negative ( Bollimunta et al., 2008 ;

el Percio et al., 2007 ; Zhang et al., 2008 ), and null relationships

 Andino et al., 2005 ; van Dijk et al., 2008 ; Bays et al., 2015 ) between

restimulus alpha power and RTs. This mixed evidence may be due to

hether power is estimated in a brain region processing task-relevant

r -irrelevant information, as well as to task differences (e.g., whether

ccuracy or speed is emphasized), different laminar organization across

egions ( Bollimunta et al., 2008 , 2011 ; Mo et al., 2011 ), or to long-range

emporal dependencies in both alpha power and RT estimates, resulting

n spurious positive and negative correlations ( Schaworonkow et al.,

015 ). 

Interestingly, we observed that RTs were positively related to alpha

ower in periodic sites, but also to the aperiodic signal in the same fre-

uency band (i.e., alpha power in aperiodic sites). This may be explained

y residual periodic activity in individual trials in aperiodic sites, or by

 recent proposal ( Donoghue et al., 2020 ; Peterson et al., 2018 ) suggest-

ng that, in addition to alpha oscillations, the aperiodic signal modulates

nformation processing and thus behavior (e.g., RT: Zhang et al., 2008 ).

.4. Interrelation between prestimulus alpha power, behavior, and 
xcitability 

Based on the functional inhibition account, we hypothesized that

restimulus alpha oscillations influence behavior by modulating ex-

itability during stimulus processing. Therefore, key to our analysis was

he mediation between prestimulus alpha power and behavior via post-

timulus BHA ( Judd and Kenny, 1981 ). We found that in periodic sites

1) single-trial prestimulus alpha power was negatively correlated with

oststimulus BHA, and (2) positively correlated with RTs (consistent

ith our binning analysis), (3) even after controlling for poststimulus

HA; and (4) that single-trial poststimulus BHA was negatively corre-

ated with RTs, (5) even after controlling for prestimulus alpha power.

ritically, controlling for poststimulus BHA reduced the correlation be-

ween prestimulus alpha power and RTs (i.e., indirect effect) in periodic

ites (but not in aperiodic sites), suggesting that alpha oscillations and

HA explained a similar portion of RT variability. This is consistent with

ediation and indicates that the behavioral changes associated with al-

ha oscillations (rather than the aperiodic signal in the same band) are

elated to the influence of alpha on excitability. 

Notably, some previous studies attempted to examine the inter-

elation between alpha oscillations, excitability, and behavior (e.g.,

artmann et al., 2015 ; Kayser et al., 2016 ; Vugt et al., 2018 ). Some

nalyzed concurrent neural and behavioral changes as a function of

ngoing/prestimulus alpha power, without directly assessing their in-

errelation ( Bollimunta et al., 2008 ; Haegens et al., 2011 ; Min and

errmann, 2007 ; Mo et al., 2011 ; Vugt et al., 2018 ). Other studies

sed statistical methods to directly test for said interrelation, but the

esults were null or inconclusive, possibly because excitability was

stimated with indirect/non-invasive measures (stimulus-evoked re-

ponse: Wöstmann et al., 2019 ; decoding metric: Kayser et al., 2016 ;

cNair et al., 2019 ). Accordingly, to the best of our knowledge, our

tudy is the first to show that a modulation of poststimulus excitability

ediates the relationship between prestimulus alpha oscillations and

ehavior, consistent with functional inhibition. However, it is impor-

ant to note that our results do not allow us to distinguish whether the

ediation reflects a direct effect of alpha oscillations, or a consequence

f an additional process affecting all variables in parallel. Future re-

earch should address this question by testing whether alpha oscillations

irectly cause the mediation effect, ideally by using neuromodulation

echniques ( Helfrich et al., 2014 ; Romei et al., 2010 ). 
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.5. Relationship between prestimulus alpha power and neural stimulus 
eature encoding 

Based on the functional inhibition account, we hypothesized that

restimulus alpha oscillations affect how stimulus information is en-

oded in excitability measures (i.e., poststimulus BHA). Using BHA tem-

oral patterns, we estimated decoder accuracy and confidence across

ifferent states of prestimulus alpha power and between periodic and

periodic sites. We found that decoder confidence decreased with alpha

ower most prominently in periodic sites with a negative alpha-BHA re-

ationship. This is consistent with the functional inhibition account and

uggests that the BHA reduction during states of strong alpha power

ay underlie the decrease in decoder confidence. By contrast, across

ll sites, decoder accuracy was unaffected by prestimulus alpha power,

ven after controlling for overall decoder accuracy and for the alpha-

HA relationship. 

How could the decoder indicate higher confidence without becom-

ng more accurate during states of increased excitability? We specu-

ate that weak prestimulus alpha power is associated with higher BHA

esponses, but also with proportionally more variability, leaving the

ignal-to-noise ratio (i.e., mean-to-variance ratio, or Fano factor) un-

hanged ( Goris et al., 2014 ; Tolhurst et al., 1981 ; Tomko and Crap-

er, 1974 ). However, as mean and variance of the neural response in-

rease, the neural stimulus representations fall farther from the classi-

er’s discriminant boundary or hyperplane (see model in Fig. 5 F). This

odulation is expected to affect the overall strength of neural stimulus

epresentations (i.e., decoder confidence) for both correct, but also in-

orrect trials, without affecting their precision (i.e., decoder accuracy).

uture work is necessary to determine whether the effects of alpha oscil-

ations on the magnitude of neuronal excitability are multiplicative (as

ssumed in our model) or additive, and whether they are proportional to

hanges in response variability, ideally by using single-unit recordings

hich enable an estimation of spike mean and variability. 

Our findings that prestimulus alpha oscillations affect decoder con-

dence, not accuracy, are consistent with a growing number of studies

eporting that strong prestimulus alpha oscillations are related to re-

uced subjective, rather than objective measures of perceptual decision-

aking in both detection (less liberal criterion: Iemi et al., 2017 ;

imbach and Corballis, 2016 ) and discrimination tasks (lower visibil-

ty: Benwell et al., 2017 , 2021 ; lower confidence: Samaha et al., 2017 ).

uture research is necessary to establish whether lower decoder con-

dence, reflecting decreased stimulus encoding strength, underlies the

erceptual effects in these studies. 

Previous studies have analyzed how decoding performance is related

o alpha oscillations, though the results were inconsistent, showing pos-

tive ( Kayser et al., 2016 ; McNair et al., 2019 ), negative ( Barne et al.,

020 ; van Ede et al., 2018 ), and null relationships ( Griffiths et al., 2019 ).

n the studies reporting a positive relationship, stimulus features were

ecoded using low-frequency EEG activity (1–70 Hz), which includes al-

ha oscillations. Therefore, it is possible that high signal-to-noise ratio

ay result in strong alpha power estimates as well as higher decod-

ng performance, potentially leading to a spurious positive correlation.

o avoid such circularity, in other previous studies stimulus identity

as decoded using the hemodynamic fMRI BOLD signal ( Griffiths et al.,

019 ) or the low-frequency activity after removing alpha-band activity

 van Ede et al., 2018 ). In our study, we addressed this issue by applying

ecoding analysis on poststimulus BHA, which does not include the al-

ha band, and reflects a more direct excitability measure than the fMRI

ignal. We reasoned that any relationship between alpha oscillations and

ecoding performance would reflect a genuine modulation of stimulus

ncoding, rather than a consequence of a potentially circular analysis. 

It is important to note that we found no significant effect of pres-

imulus alpha power on decoder accuracy, consistent with one previ-

us report using representational similarity analysis ( Griffiths et al.,

019 ). By contrast, one previous study ( van Ede et al., 2018 ) found

hat lower decoder accuracy (i.e., Mahalanobis distance) was related to
12 
trong prestimulus alpha power in posterior EEG, specifically in the pres-

nce of poststimulus distractors. When distractors were absent (as in our

aradigm), decoder accuracy was no longer related to prestimulus alpha

ower, suggesting that the effect on decoder accuracy might emerge

hen the task requires the suppression of task-irrelevant information,

hich is believed to be supported by alpha oscillations ( Haegens et al.,

010 ). Moreover, in another study ( Barne et al., 2020 ), lower decoder

ccuracy (i.e., AUC) was related to strong prestimulus alpha power in

arieto-occipital EEG electrodes when attention was cued to the spa-

ial location of the to-be-decoded sensory stimuli. Therefore, it is pos-

ible that decoder accuracy may be affected by attention-induced/local

as opposed to ongoing/global) fluctuations of alpha oscillations. Ac-

ordingly, future studies are necessary to determine whether decoder

ccuracy is influenced by a top-down modulation of alpha oscillations,

deally by using paradigms manipulating distractors and spatial atten-

ion. 

Of note, in this study we performed spatial decoding, which uses tem-

oral features of the neural signal at each recording site to classify sen-

ory stimuli. This enabled us to combine data across patients and carry

ut group-level, across-site statistical testing. An alternative to spatial

ecoding is temporal decoding, which instead uses spatial features of the

eural signal at each time point. Temporal decoding is more common

n non-invasive electrophysiology where the data is collected at similar

patial locations across subjects, allowing for group-level, across-subject

tatistical testing. In the current study, the different electrode coverages

cross patients, together with the low sample size, prevents us from per-

orming temporal decoding. Future studies using non-invasive electro-

hysiology with a bigger sample size are necessary to test how temporal

ecoding is affected by ongoing oscillations. 

.6. Conclusions 

In sum, we demonstrate that strong prestimulus oscillations in the

lpha + band (i.e., alpha and neighboring frequencies), rather than the

periodic signal, are associated with (1) decreased BHA (i.e., low neu-

onal excitability) before and after sensory input. Furthermore, we show

hat strong prestimulus alpha oscillations result in (2) slower percep-

ual decisions, and (3) reduced sensory encoding strength. These results

rovide a link between neural oscillations, excitability, and task perfor-

ance, consistent with functional inhibition: we propose that, by modu-

ating neuronal excitability, ongoing alpha + oscillations affect behavior

nd neural stimulus representations. 

. Methods 

.1. Participants 

This study involved nine individuals with medication-resistant

pilepsy (5 females; mean age, 29 years, SEM = 4). All patients had

ntracranial electrodes implanted as part of presurgical diagnosis of

pilepsy. Data collection was performed at the Comprehensive Epilepsy

enter of New York University Langone Health, and was approved by

he Institutional Review Board at New York University Langone Health.

erbal and written informed consent were collected from all patients

efore participation in the study in accordance with the Declaration

f Helsinki. Results from six individuals have been previously reported

 Auksztulewicz et al., 2018 ). 

.2. Experimental design 

Each trial started with the presentation of a fixation cross (1.5 to

 s), followed by a sequence of visual and auditory stimuli: a noise im-

ge, a picture of a scene, a picture of a face, and an auditory syllable

 Fig. 1 A). The order of the sequence was fixed across trials. Each of

he visual stimuli and the auditory stimulus were presented for a dura-

ion of 0.210 and 0.250 s, respectively. Visual stimuli were displayed
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t the center of a laptop screen placed at the bedside at approximately

 70-cm distance. The noise image consisted of grayscale random hor-

zontal and vertical lines and was identical in all trials. For the other

timuli, different exemplars were presented across trials, selected from

our different scene images (e.g., the White House or Taj Mahal), eight

ifferent face images (e.g., Barack Obama, George W Bush), and two dif-

erent syllables (/ga/ vs. /pa/) The target syllables were produced by a

ale speaker; during the experiment, they were played with speakers at

0 dB or levels comfortable for the patient. The participants were asked

o perform a 2-alternative-forced-choice discrimination of the target syl-

able ( “which syllable did you hear: /ga/ vs. /pa/? ”) with a speeded but-

on press using the index and middle fingers of the right hand. The ex-

eriment was implemented in Presentation (Neurobehavioral Systems;

ttps://www.neurobs.com/ ). 

The behavioral paradigm was based on a 2 × 2 factorial design

ith factors “when ” predictability and “what ” predictability, resulting

n four different conditions, each of which was recorded in a sepa-

ate run, and randomized across participants (for more information see

uksztulewicz et al., 2018 ). In brief, “when ” predictability was manip-

lated by varying the timing between visual and auditory stimuli across

rials: the four stimuli comprising a trial were presented with either a

xed inter-stimulus interval (ISI) of 1 s in the temporally predictable

uns or with a randomly jittered ISI (mean 1 ± 0 to 0.5 s random jitter)

cross trials in the temporally unpredictable runs. In addition, “what ”

redictability was manipulated by using contingencies between the vi-

ual stimuli and the target syllable. In the content-predictable runs, spe-

ific sequences of scene/face images predicted the identity of the target

yllable (75% probability), while in the content-unpredictable runs, the

wo target syllables were equiprobable across trials. To increase sta-

istical power of single-trial analyses, we combined trials from all pre-

ictability conditions with a sufficient prestimulus window (i.e., trials

ith ISI > = 1 s). 

.3. Neural recordings 

The electrodes consisted of 8 × 8 grids of subdural platinum-iridium

lectrodes embedded in Silastic sheets (2.3-mm-diameter contacts, Ad-

ech Medical Instruments) with a minimum 10-mm center-to-center dis-

ance implanted over the temporal/frontal cortices, with additional lin-

ar strips of electrodes and/or depth electrodes. In this dataset, grid,

trip and depth-electrodes were used at 41, 43, 16% of the sites, respec-

ively (total N = 1044 electrodes). Recordings were obtained using the

icolet ONE clinical amplifier (Natus). During recording, the signal was

andpass filtered from 0.5 to 250 Hz, digitized at 512 Hz, and online

eferenced to a screw bolted to the skull. 

We performed electrode localization using previously described pro-

edures ( Yang et al., 2012 ). In brief, for each patient, we obtained

reoperative and postoperative T1-weighted MRIs, which were sub-

equently co-registered and normalized to an MNI-152 template, al-

owing the extraction of the electrode location in MNI space. We as-

igned anatomical labels to each electrode using FreeSurfer cortical

arcellation ( Fischl et al., 2004 ) based on the Desikan-Killiany atlas

 Desikan et al., 2006 ), resulting in 983 localized electrodes out of 1044.

he Freesurfer suite provides an automated labeling of the cerebral cor-

ex into units based on gyral and sulcal structure. 

Electrophysiological data analysis was performed using

ustom-built MATLAB code (version R2019a; The MathWorks;

RID: SCR_001622 ) and the Fieldtrip toolbox (version 2018.08.01;

ww.ru.nl/neuroimaging/fieldtrip). Continuous signals were notch-

ltered at 58–62 Hz and harmonics using zero-phase Butterworth

lters. The data were re-referenced to a common average and seg-

ented into epochs from − 1.5 to 1 s relative to the onset of each

isual and auditory stimulus (stimulus-locked) and relative to the

otor response (response-locked epochs). In total, we obtained

6(trials) ∗ 5(epochs) ∗ 4(runs) = 1920 epochs per patient. 
13 
We rejected artifactual electrodes in which the BHA time-course dur-

ng the 1-s prestimulus window exceed 5 standard deviations from the

ean in at least 50 trials. We corroborated this automatic procedure

ith visual inspection and removed a total of 76 artifactual electrodes

cross 9 patients. 

We discarded 48 epochs per patient with an ISI < 1 s. Additionally,

e rejected artifactual epochs in which either the raw signal or the BHA

ime-course (at any electrode) from − 1 to 1 s relative to stimulus on-

et exceeded 25 standard deviations from the mean. We corroborated

his automatic procedure with visual inspection and removed 136 arti-

actual epochs per patient. We analyzed 1595 epochs per patient (344

oise-locked, 278 scene-locked, 281 face-locked; 356 syllable-locked;

34 response-locked epochs). For RT and single-trial analysis (mediation

nd decoding), we further discarded noise- and syllable-locked epochs

ith incorrect responses (36 epochs per patient), and with premature

RT < 0.1 s; 10 epochs per patient) or late RTs (RT > 0.8 s; 37 epochs per

atient). Mean RT across patients was 0.466 s (SEM 0.031). 

.4. Spectral analysis 

We computed power spectra for time windows before and after stim-

lus onset, separately for each electrode and for noise-, scene-, face,

nd syllable-locked epochs. The duration of the prestimulus window

as 1 s for noise- and syllable-locked epochs, and 0.5 s (zero-padded

o 1 s) for scene- and face-locked epochs to diminish the contamination

ue to event-related activity of previous visual stimuli. The duration

f the poststimulus window was 1 s in all epochs. We multiplied these

pochs with a Hanning taper, and estimated the spectra between 1 and

50 Hz (1-Hz frequency resolution) using a fast Fourier transform (FFT)

pproach. 

We computed a single-trial estimate of the power in the alpha (7–

4 Hz) and BHA range (70–150 Hz). Note that the lower bound for BHA

as set to 70 Hz based on previous literature (e.g.,: Leszczy ń ski et al.,

020 ) to exclude narrow-band gamma oscillations occurring between

0 and 70 Hz, which reflect distinct physiological phenomena. To avoid

isproportionally representing power at the lower-bound frequencies

 ∼70 Hz) due to the 1/f property of the neural signal, we computed

he percent signal change relative to the mean power across trials sepa-

ately for each frequency and site and then averaged the values between

0 and 150 Hz to obtain a frequency-normalized estimate of BHA. This

ormalization ensures that frequencies between 70 and 150 Hz equally

ontribute to the BHA estimates. 

In addition, to inspect the time course of the spectral dynamics,

e computed time-frequency representations (TFRs) of power. We esti-

ated the low-frequency TFR (2–40 Hz; 1-Hz step size) using an adap-

ive sliding time window of three cycles length ( ∆t = 3/f), and the high-

requency TFR (70–150 Hz; 5-Hz step size) using a fixed window of

.2 s, and applied a Hanning taper before estimating power using an

FT approach. The BHA time-course was computed by averaging the

igh-frequency TFR across frequencies. 

.5. Spectral peak detection 

To determine the individual alpha peak frequency for each site, we

sed the local maximum method whereby we detected the highest local

aximum within the alpha range of the power spectra (using 1-s pres-

imulus noise-locked epochs), regardless of its absolute magnitude (no

ower threshold used; following the methods in Haegens et al., 2014 ).

e refer to electrodes with and without alpha-band peaks as “periodic ”

nd “aperiodic ” sites, respectively. Note that the alpha range was set

etween 7 and 14 Hz in line with previous literature and to account

or slower alpha oscillations previously reported in epilepsy patients

 Stoller, 1949 ; Abela et al., 2019 ). 

In addition to the local maximum peak detection method described

bove, we used four complimentary methods to classify the sites into

eriodic and aperiodic based on activity during the 1-s prestimulus

https://www.neurobs.com/
https://www.rridsoftware:SCR_001622
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oise-locked epochs. First, we used linear regression (least-squares fit)

o fit a linear model to the log-transformed power spectra separately for

ach site. We subtracted the fitted linear trend from the log-transformed

ower spectra to remove the 1/f aperiodic signal, as this obscures

maller peaks by strongly biasing lower frequencies. We then detected

he alpha-band peak on the flattened power spectrum using the same

ethod reported above ( Haegens et al., 2014 ; Nikulin & Brismar, 2006 )

nd sorted the sites into periodic (with peak) and aperiodic (without

eak). We found 542 periodic sites (81% overlap with local maximum

ethod) and 502 aperiodic sites (83% overlap with local maximum

ethod). 

Second, we applied an adaptive algorithm fitting a Gaussian curve

o the power spectra separately for each site. We used the fitted gaus-

ian curves to detect peaks within the alpha range ( Van Albada and

obinson, 2013 ) and sorted the sites into periodic (with peak) and ape-

iodic (without peak). We found 469 periodic sites (94% overlap with

ocal maximum method) and 575 aperiodic sites (85% overlap with lo-

al maximum method). Since the gaussian fit effectively smooths the

pectra, this method is thought to improve peak detection, for example,

hen the spectrum has two local maxima close to each other, or when

oisy spectra lead to spurious peaks. Moreover, peak detection is more

onservative using this method as sites without substantial modulation

n the alpha range are automatically excluded (i.e., Gaussian fit fails).

herefore, this enables us to confirm that our original peak detection

ethod was not biased by inclusion of potentially spurious peaks. 

Third, we used the Fitting Oscillations & One Over F (FOOOF) algo-

ithm ( Voytek et al., 2015 ; Donoghue et al., 2020 ) to detect alpha-band

eaks as frequency regions of the power spectrum within the alpha range

ith power over and above the aperiodic 1/f signal. We used Welch’s

ethod to compute the power spectra separately for each site. Then, we

pplied the FOOOF algorithm to detect peaks within the alpha range

nd sorted the sites into periodic (with peak) and aperiodic (without

eak). We selected the following settings based on the FOOOF online

utorial and related publications (modeled frequencies: 2–40 Hz, maxi-

um number of peaks: 6, peak widths: 1–8, minimum peak height: 0.1

rbitrary units of power, peak threshold: 2 standard deviations, fixed

pproach). For each site, we estimated the error of the fit and excluded

5 sites where the error exceeded an arbitrary threshold (i.e., 2 standard

eviations above the mean error across all sites), indicating that periodic

nd aperiodic activity could not be separated in these sites. The remain-

ng sites had an average error of fit of 0.049 au (SEM = 0.001); the error

f fit did not significantly differ between periodic and aperiodic sites

t(997) = − 0.767, p = 0.443). We found 737 periodic sites (59% overlap

ith local maximum method) and 262 aperiodic sites (74% overlap with

ocal maximum method). 

Fourth, we applied an extended version of the Better OSCillation de-

ection method (eBOSC; cf. Caplan et al., 2001; Whitten et al., 2011,

osciessa et al. 2020 ) to sort the sites in periodic and aperiodic. We

rst concatenated all epochs into one data segment, and performed

ime-frequency transformation using 6-cycle Morlet wavelets with 41

ogarithmically-spaced center frequencies ranging from 2 to 64 Hz. We

stimated the aperiodic signal using robust regression, excluding fre-

uency within the alpha range. The power threshold (PT) was set to the

5% percentile of the robust fit of the aperiodic signal and the dura-

ion threshold (DT) was calculated based on the duration of three com-

lete oscillation cycles at each frequency. Episodes of periodic activity

i.e., oscillations) were defined as time points during which the wavelet-

erived power at a particular frequency exceeds both PT and DT. For

ach site and frequency, we estimated the proportion of time within the

nalyzed data segment during which oscillations at a given frequency

ere present (i.e., P episode ). We averaged P episode within the alpha range

eparately for each site and then sorted the sites into three bins based on

he magnitude of alpha-band P episode . We refer to the bins with strongest

average P episode = 0.354, SEM = 0.004) and weakest alpha-band P episode 

average P episode = 0.089, SEM = 0.002) as periodic and aperiodic sites,

espectively. We found 355 periodic sites (82% overlap with local max-
14 
mum method) and 345 aperiodic sites (76% overlap with local max-

mum method). The sites from the middle bin (mean P episode = 0.186,

EM = 0.002) were excluded from subsequent data analysis, as they re-

ect a mixture of periodic and aperiodic activity. 

.6. Power-based binning analysis 

To analyze the across-trial relationship between low-frequency os-

illations and BHA, for each site we sorted trials into five bins (e.g.,

inkenkaer-Hansen et al., 2004 ; Iemi et al., 2019 ) based on alpha power

7–14 Hz) during the 1-s prestimulus windows. For each bin we com-

uted the average BHA for each time window. Similarly, we binned tri-

ls based on BHA, and computed the average TFRs of low- and high-

requency power spectra per bin. For group-level statistical analysis and

isualization, the power spectra were normalized by the average power

cross all frequencies and bins, while the TFRs and BHA time-courses

ere normalized by the average power across time and bins per fre-

uency. 

.7. Statistical analysis 

We used non-parametric cluster-based permutation tests ( Maris and

ostenveld, 2007 ) for contrasts involving a temporal dimension. By

lustering neighboring samples (i.e., time-frequency points) that show

he same effect, this test controls for the multiple comparison problem

hile taking into account the dependency of the data. For each sample,

 dependent-sample t-value was computed across sites for the relevant

ontrast (e.g., power difference between bins). We selected all samples

or which this t-value exceeded an a priori threshold ( p < 0.05), clus-

ered these samples on the basis of temporal-spectral adjacency, and

omputed the sum of t-values within each cluster. By randomly per-

uting the data across the most extreme bins (bin 1 and 5) 1000 times

nd determining the maximum t-sum on each iteration, we obtained a

eference distribution of t-sums. A final p-value was calculated as the

roportion of t-sums under the null hypothesis larger than the sum of t-

alues within clusters in the observed data. We adjusted the final alpha

hresholds using Bonferroni correction for multiple comparisons (i.e.,

or multiple contrasts). 

.8. Functional-anatomical regions of interest 

We defined three experimentally relevant ROIs using a combina-

ion of functional and anatomical localizers. The functional localizer

dentified recording sites that were active during the presentation of

he experimental stimuli (noise, scene, face, and syllable in stimulus-

ocked data) and during the behavioral response (in response-locked

ata). For each site we averaged the BHA time-course over the pres-

imulus window across stimulus-locked ( − 1.1 to − 0.1 s) and response-

ocked epochs ( − 1.35 to − 0.35 s). Then, for each site, we calculated the

hreshold as 2 standard deviations above the prestimulus BHA signal av-

raged across time points and trials. We identified stimulus-related and

esponse-related sites as those sites whose poststimulus BHA time-course

xceeded the site-specific threshold in stimulus-locked (0 to 0.5 s) and

esponse-locked epochs ( − 0.25 to 0.25 s). Using this functional local-

zer, we identified 95 noise-related, 95 scene-related, 137 face-related,

00 syllable-related, and 565 response-related sites across 9 patients. 

We complemented the functional localizer with an anatomical lo-

alizer. Specifically, we identified regions based on anatomical labels

lassically related to sensory processing and motor planning/response.

ur visual localizer included the cuneus, lateral-occipital areas, lingual

rea, pericalcarine, fusiform gyrus, and inferior-temporal areas ( N = 123

ites). Our auditory localizer included transverse-temporal area, middle-

emporal, superior-temporal, banks of the superior-temporal sulcus,

upramarginal areas, pars opercularis, pars triangularis, superior-

emporal gyrus ( N = 309). Our somatomotor localizer included precen-

ral and postcentral areas ( N = 191). 
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Finally, we combined the functional and anatomical localizers to ob-

ain the visual, auditory and somatomotor ROIs. Specifically, the overlap

etween visual anatomical sites and the combination of noise-, scene-,

ace-related functional sites yielded the visual ROIs ( N = 68). The over-

ap between the auditory anatomical sites and the syllable-related func-

ional sites yielded the syllable-selective ROI ( N = 103), while the over-

ap between the somatomotor anatomical sites and the response-related

unctional sites yielded the somatomotor ROI ( N = 129). 

.9. Baseline shift analysis 

To determine whether baseline shift of non-zero-mean alpha oscil-

ations contributes to the observed alpha-BHA relationship in periodic

ites, we estimated the non-zero-mean property of alpha oscillations

sing the Baseline Shift Index (BSI: Nikulin et al., 2007 , V.V. 2010 )

nd the Amplitude Fluctuation Asymmetry Index (AFAI: Mazaheri and

ensen, 2008 , A. 2010 ; van Dijk et al., 2010 ). In each patient and for

ach site, BSI and AFAI were estimated on the continuous (i.e., non-

poched) data and averaged across experimental runs. We classified pe-

iodic sites in two groups depending on whether BSI (or AFAI) within

he alpha range was positive or negative. 

To quantify BSI, the raw EEG data was first band-pass filtered us-

ng a 4th-order Butterworth filter centered at each frequency of interest

 1 Hz. Then, the Hilbert transform was used to extract a time-resolved

ower envelope. In addition, the raw EEG data was low-pass filtered

sing a 4th-order Butterworth filter with a 3-Hz cut-off frequency. We

omputed BSI as the Spearman correlation ( 𝜌) between the power enve-

ope and the low-pass EEG signal (i.e., slowly varying DC-like compo-

ent) separately for each frequency and site ( Iemi et al., 2019 ). When the

ow-pass signal is unaffected by power fluctuations, resulting in BSI = 0,

here is evidence for zero-mean oscillations. Instead, when states of

trong power result in positive (BSI > 0) or negative (BSI < 0) shifts of the

ow-pass signal, there is evidence for positive and negative oscillatory

ean, respectively. 

AFAI is based on the assumption that power fluctuations of non-

ero-mean oscillations affect the peaks and troughs of the EEG signal

ifferently. To quantify AFAI, we identified the time points of peaks

nd troughs as those data samples in the band-passed data which were

arger (peaks) and smaller (troughs) than the two neighboring samples,

espectively, and then estimated the magnitude of the raw EEG signal

t these time points. We computed AFAI as the normalized difference

etween the variance at the time points of the peaks and troughs in

he raw EEG signal separately for each frequency and site. Amplitude

ymmetry (AFAI = 0, power fluctuations equally modulate peaks and

roughs) indicates a zero oscillatory mean. Amplitude asymmetry indi-

ates a non-zero-mean: specifically, AFAI > 0 indicates a stronger modu-

ation of the peaks relative to the troughs, or a positive oscillatory mean;

FAI < 0 indicates a stronger modulation of the troughs relative to the

eaks or a negative oscillatory mean (see V.V. Nikulin et al., 2010 for a

omparison between BSI and AFAI). 

We used a binning approach to analyze how BHA in the prestimulus

nd poststimulus window in noise-locked epochs changes as a function

f prestimulus alpha power separately for the negative- and positive-

ean sites. We repeated this analysis for ERPs: single-trial ERPs were

omputed on low-pass filtered data ( < 30 Hz) and baseline-corrected

ith the 1-s prestimulus signal. 

.10. Behavioral analysis 

We estimated behavioral performance using reaction times (RTs).

ote that discrimination accuracy was at ceiling (90% correct discrimi-

ation across blocks) with only 36 incorrect responses per patient, thus

reventing an analysis of trial-by-trial fluctuations. We used a binning

pproach to analyze how RTs on correct trials change as a function

f prestimulus alpha power in periodic and aperiodic sites. We log-

ransformed RTs to correct for the skewness of their distribution. We
15 
veraged RTs across epochs for each bin, and normalized these esti-

ates by the average RT across all epochs, separately for each patient.

his analysis was run for noise- and syllable-locked epochs. 

To understand the interrelation between prestimulus oscillations,

ehavior, and poststimulus excitability in syllable-locked epochs, we

ested a mediation model in which prestimulus alpha oscillations (inde-

endent variable X) may affect RTs on correct trials (dependent variable

) via a modulation of poststimulus BHA (mediator, M). To this end, we

sed a causal step approach ( Baron and Kenny, 1986 ; MacKinnon et al.,

000 , 2007 ; Judd and Kenny, 1981 ) characterized by analyzing the cor-

elation coefficients of four generalized linear models (GLMs). 

The first GLM consists of a simple regression with independent vari-

ble predicting the mediator: M = i + aX + e , where X is prestimulus

lpha power, M is poststimulus BHA, and a is the zero-order correlation

oefficient reflecting the direct effect between X and M. In all GLMs, i

efers to the intercept and e to the residual error of the model. Media-

ion requires that prestimulus alpha power is negatively correlated with

oststimulus BHA ( a < 0). 

The second GLM consists of a simple regression with the mediator

ariable predicting the dependent variable: Y = i + bM + e , where Y is RT,

 is poststimulus BHA, and b is the zero-order correlation coefficient

eflecting the direct effect between Y and M. Mediation requires that

oststimulus BHA is positively correlated with RTs ( b < 0). 

The third GLM consists of a simple regression with the independent

ariable predicting the dependent variable: Y = i + cX + e , where X is

restimulus alpha power, Y is RT, and c is the zero-order correlation co-

fficient reflecting the direct effect between X and Y. Mediation requires

hat prestimulus alpha power is positively correlated with RTs ( c > 0). 

The fourth GLM consists of a multiple regression with the inde-

endent variable and the mediator predicting the dependent variable:

 = i + c’X + b’M + e , where X is prestimulus alpha power, Y is RTs,

 is poststimulus BHA, and c’ and b’ are the partial correlation coeffi-

ients reflecting the indirect effect between X and Y adjusted for M, and

etween M and Y adjusted for X, respectively. Mediation requires that

oststimulus BHA is positively correlated with RTs after controlling for

restimulus alpha power (b’ < 0). 

In addition, mediation requires a significant reduction in the effect of

he independent variable on the dependent variable after accounting for

he mediator, which can be estimated by the difference between zero-

rder and partial coefficients (c - c’): c > c’ (in absolute values) indicates

artial mediation (or full mediation if c’ = 0). Note that mediation as-

umes that the independent variable X causes the mediator M (second

LM), and thus that the two variables are correlated. This correlation

esults in multicollinearity when the effects of independent variable and

ediator on the dependent variable are estimated in a multiple regres-

ion model, yielding reduced coefficients in the fourth GLM. 

We ran these four GLMs separately for each site, using single-trial

FT estimates of prestimulus alpha power, frequency-normalized post-

timulus BHA, and RTs. Direct effects were estimated using variables

hat were normalized by z-scoring across trials, whereas the indirect

ffect was estimated using the original variables (i.e., not normalized).

ote that, to compute unstandardized coefficients of the first and fourth

LM, we used RTs expressed in ms. 

.11. Decoding analysis 

We used multivariate pattern analysis (or “decoding ”) to examine

he relationship between prestimulus alpha oscillations and neural stim-

lus representations encoded in BHA. First, we tested whether stimulus

eatures (i.e., syllable identity) could be decoded from the recorded neu-

al activity; next we tested whether prestimulus alpha power modulates

ecoder accuracy and/or confidence. 

We evaluated stimulus encoding in the time-course of neural activ-

ty using spatial decoding (similar to Gwilliams and King, 2020 ): we

sed l2-regularized logistic regression, under a stratified k-fold ( k = 4)

ross validation scheme. Input features were normalized by the mean
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nd the standard deviation of the training set. All decoding analyses

ere performed using the Python package scikit-learn (version 0.22.1:

edregosa et al., 2011 ). The optimal regularization parameter was se-

ected for each fold separately, by finding which of 10 log-spaced regu-

arization strengths from 1e-4 to 1e + 4 led to best model performance

n the test set (using the LogisticRegressionCV scikit-learn function

ith default parameters). We used 1000 maximum iterations of the

lbfgs’ optimization algorithm. The input features to the classifier were

7 time-samples (0 to 0.8 s relative to syllable onset) of either BHA

frequency-normalized estimate) or the low-passed signal ( < 30 Hz; e.g.,

williams and King, 2020 ; King et al., 2016 ; Salti et al., 2015 ). We down-

ampled the low-passed signal to match the temporal resolution of BHA.

he categorical class labels corresponded to syllable identity (/ga/ vs.

pa/). We analyzed 310 trials for each patient, with 233 trials used for

ach training set and 76 for each test set. The model was trained and

ested within each recording site separately, providing a prediction for

ach trial at each location over space, based on the multivariate pattern

f activity over time. 

We derived two decoding performance metrics from the classifier

redictions: AUC (i.e., decoder accuracy) and the maximum probabilis-

ic prediction (i.e., decoder confidence). For AUC, we evaluated the sim-

larity between the true label categories of the test set and the proba-

ilistic class labels (normalized distance from the fit hyperplane: “pre-

ict_proba ” in scikit-learn) of the same trials. We computed the AUC

nder the null hypothesis by randomly shuffling the label categories to

he classifier and obtained a p-value as the proportion of the null AUC

stimates (across sites) that exceeded the true AUC independently for

ach site. We considered the AUC as significantly greater than chance if

ts p-value < 0.05. This analysis resulted in a decoding anatomical map

ndicating where syllable identity can be linearly decoded from tempo-

al patterns of either BHA or low-passed signal ( Fig. 5 AB supplement).

he maximum probabilistic prediction indicates the strength of the neu-

al stimulus representation, regardless of whether or not it matches the

round truth; in other words, it is a measure of the classifier’s “confi-

ence ” about the true class label of a given trial, regardless of accuracy.

hen the probability = 0.5, the classifier’s predictions for the two class

abels are identical (i.e., low confidence); when probability > 0.5, the

lassifier prediction for one class label is stronger than for the other class

abel (i.e., higher confidence). 

We asked whether prestimulus oscillatory state shapes neural stimu-

us representations as reflected by decoding performance metrics. To test

his, we evaluated how decoder accuracy and confidence based on BHA

as related to trial-by-trial fluctuations of prestimulus alpha power. We

sed the classification procedure explained above, replacing the k-fold

ross validation with a leave-one-out cross-validation (LOOCV) proce-

ure. In LOOCV, the classifier is fit on all trials but one, evaluating model

erformance on the remaining “left-out ” trial as a single-item test set.

his is advantageous because it allows a maximal amount of data to be

sed for training, thus reducing noise in the model fit, and because it

rovides a single-trial decoding estimate which can be analyzed by a

inning approach. For each site and test trial, we computed the prob-

bilistic estimates of the logistic regression for each syllable, grouping

he results into five bins relative to prestimulus alpha power. Then, for

ach bin we estimated the AUC using the classifiers’ probabilistic esti-

ates of the test trials and the vector of true class labels. Additionally,

e normalized the maximum probabilistic estimates by z-scoring across

rials, and computed decoder confidence by averaging these estimates

ithin each bin. 
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