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Abstract

Understanding the computational algorithm that gives rise to human lan-
guage is a shared endeavor among neuroscience, linguistics, and machine
learning. We propose a conceptual framework for making measurable
progress toward this goal by studying the subcomponents of the processing
system: its underlying representations, operations, and information flow. We
review evidence from neurophysiology, neuropsychology, linguistic theory,
and computational modeling and suggest future directions to push the field
forward in developing a precise characterization of spoken language under-
standing. Overall, we claim that representations of speech properties, and the
operations that generate and manipulate those representations, exist within
a highly parallel, highly redundant spatiotemporal regime.
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INTRODUCTION

For a listener, understanding speech typically feels like a spontaneous, effortless process. The
fluctuations in air pressure created by an interlocutor can instill colorful stories or mundane
pleasantries without ever consciously commanding the mind to do so. This automaticity of un-
derstanding is in stark contrast to the computational complexity of transforming sounds into
meaning.

There are many things that make speech comprehension a complicated task. First, there is
nothing inherent in the sounds of language themselves, or the order in which they are artic-
ulated, that determines what meaning a person is trying to convey. This arbitrary mapping is
demonstrated when conveying a similar concept (e.g., happiness) in different languages. Doing so
requires employing different sounds in different systematic configurations (e.g., felicidade in Por-
tuguese, zoriona in Basque, Gliick in German). It is not the sounds that determine meaning but
rather their learned and arbitrary associations (Holdcroft 1991).

Another significant challenge comes from the high variability in the acoustic realization of
the same utterance, both within and across speakers. For instance, though the authors of this
review all have similar-sized vocal tracts, the temporal-spectral analysis of each author’s utterance
of happiness looks very different; yet, all need to be mapped to a common conceptual representation
(Klatt 1986, Liberman et al. 1952). This many-to-one mapping between acoustic realization and
language unit requires abstraction over the sensory input in order to identify a linguistic sequence
that is invariant to the specific acoustic realization.

Furthermore, though the speech signal is continuous, both in time and in modulation value, it
must be transformed into discrete units, which connect to stored representations in the brain.
There are no systematic silences between meaningful units in continuous speech, and so un-
derstanding where a relevant unit of language begins and ends, such that it can be scrutinized
appropriately, is not trivial (Brent 1999).

How does the brain overcome these challenges and achieve speech comprehension? Given that
there is no direct linear mapping between sound and meaning, the brain needs to abstract away
from the sensory realization of the speech input in order to recognize the higher-order properties
it contains. To do so, it must apply a series of nonlinear transformations on the acoustic signal
to create a hierarchy of acoustic and linguistic representations that become less similar to the in-
put, and more similar to the intended meaning, with each transformational step. In this review,
we propose that these processes, which make up the computational architecture of speech com-
prehension, are best understood under a three-level framework: representations, operations, and
information flow (see Figure 1). Studying the system relative to these fundamental components
and how they interact provides a tractable analytical framework to gain understanding of the sys-
tem as a whole and of how the system has evolved to solve the numerous challenges of speech
comprehension.

REPRESENTATIONS, OPERATIONS, AND INFORMATION FLOW

What set of representations does the brain generate from the auditory signal to bridge from
sound to meaning? Representations comprise properties of the speech signal, and properties of
language, that the brain generates or retrieves during speech processing. Examples of representa-
tions could include a cochlear representation of the speech signal or something more abstract
and linguistically motivated, such as syllables and morphemes (see Figure 1). Hypotheses of
what those representations may be, as discussed below, have been generated based on linguistics,
domain-general auditory neuroscience, and most recently computational approaches including
deep language models and automatic speech recognition systems.
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Figure 1

Semantics

Schematic of the representations, operations, and information flow supporting comprehension of the spoken utterance We like poetical
science. Candidate representations are shown in black, operations are shown in green boxes, and information flow is indicated by the
blue arrows. Note that the information flow contains bidirectional connections, skip connections, and parallel processes.

What operations does the brain implement to generate and manipulate those representations?
By operations we mean processes such as filtering the signal within a given frequency range, ad-
dition, multiplication, concatenation, or application of a nonlinear categorization. Each operation
takes an input representation and performs a transformation to produce an output representation
(see green boxes in Figure 1). By applying a large number of operations on the speech signal,
whereby the output of one operation becomes the input to many others, the system is capable of
generating very complex nonlinear properties of speech. Each operation takes a given amount of
time to complete, contributing to overall processing time and cumulatively producing a reaction
time that could be measured behaviorally on a given task.

Finally, it is crucial to determine the information flow of the system: In what order are rep-
resentations generated, and in what order are operations performed? Even with the same set of
representational bases and operations in place, depending on the dependency structure between
them (e.g., representation A is a prerequisite for generating representation B), the overall output
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of the system and the strategies it uses during processing could be drastically different. Rep-
resentations can be passed between and within brain areas through the use of different forms
of connection. These include feedforward connections, where information that has undergone
fewer transformations (i.e., is relatively more “simple”) is passed to neural populations that pro-
cess relatively more “complex” information; feedback connections that pass complex information
to neural populations that process simpler information; and recurrent connections that pass infor-
mation at any level of complexity from one neural population back to the same neural population,
thus allowing information to be maintained over time. Skip connections allow information to be
passed between neural populations that are not immediately adjacent in the anatomical hierarchy.
Connections are depicted in Figure 1 as blue arrows.

Unlike representations and operations, which are defined over a single neural population at
a given time, information flow is defined relative to how information moves across space and
across time. This could be at the micro scale (e.g., within the processing circuit of a single cortical
column), at the meso scale (e.g., information moving within a given gyrus or brain region), or
at a more global scale (e.g., information passing from one brain region to another). Information
flow can be studied on the basis of relative differences in the latency of neural responses, as time-
locked to a given speech event, under the assumption that, as information passes across neural
populations, it causes a cascade of responses that unfold in time.

Representations form the basis upon which to identify the operations and information flow
of the system. Given that representations are the input and output of a given computation—one
representation comes in and a different representation comes out—if the representation changes,
or if the way it is encoded in neural activity (i.e., its coding scheme) changes, then a neural opera-
tion is at work. Similarly, the relative latency with which representations emerge in neural activity
reflects how information is passing through the system to derive those representations.

Identifying the representations of the system is therefore the analytical bedrock upon which
the other components of the system can be uncovered. Linguistic theory has proven to be an
invaluable hypothesis generator for the types of representations that the brain may encode to
process and understand language. Here, we review neurophysiological data from healthy adults,
whereby modulation in neural activity during typical functioning is associated with the different
hypothesized components of the speech input being processed. We also review evidence from
adults with acquired language disorders, whereby lesions to certain brain areas can be associ-
ated with deficits in speech processing, thus providing causal links between the affected area and
(@) the representations it houses, () the operations it likely performs, and () the dynamic topog-
raphy of information flow. The common goal is to link the property of speech on the one hand (be
it acoustic, linguistic, or statistical in nature) with the neural correlate on the other (be it strength
of activity in a given area of the brain at a given latency or the pathology of, or damage to, neural
tissue).

NEURAL SUBSTRATES OF THE COMPUTATIONAL ARCHITECTURE

Acoustic, Phonetic, and Syllabic Representations Are Polymorphic Across
the Auditory Cortex

Linguistic theory tends to conceptualize acoustic, phonetic, and syllabic representations as sepa-
rable from each other with each composed to form the next in a hierarchical manner. However,
recent research shows a much more nuanced picture in which acoustic, phonetic, and syllabic
representations exist in parallel and for long durations during speech processing. In this section
we explore what is currently known about these sub- and suprasegmental features and their in-
stantiation in the cortex; we emphasize the polymorphism of these representations—that is, the
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parallel generation of distinct but highly redundant representations of the input that emphasize
or minimize particular aspects of the signal, which can be used to optimize different downstream
processes.

At early levels of speech perception (i.e., as sound enters the auditory cortex), representations
are predominantly organized by frequency. As the sound signal reaches the auditory cortex, neural
populations represent information about the frequency content of the sound and how it varies over
time. This is inherited from the frequency-organized information derived at the cochlea in the in-
ner ear and the subsequent representations of frequency in subcortical structures like the auditory
thalamus. Figure 1 illustrates this as a frequency-by-time representation of the input; spectral de-
tail is analyzed across windows of time and across windows of frequency modulation (Whiteford
et al. 2020). This spectrotemporal information has been shown to be encoded in the primary au-
ditory cortex, where neurons respond to a narrow band of frequency information (Khalighinejad
et al. 2021) with an average peak latency of ~40 ms (Simon et al. 2022).

This time—frequency representation of acoustic input is not specific to speech and is evoked
in response to all acoustic inputs; however, some studies have found stronger responses to natural
speech than to nonspeech stimuli (Belin & Zatorre 2000, Khalighinejad et al. 2021, Moerel et al.
2012). Furthermore, some studies have found that responses to vowels in the primary auditory
cortex do not scale linearly with the acoustic input but rather exhibit categorical responses that
align with perceptual vowel categories (Levy & Wilson 2020). This has also been demonstrated
for nonspeech stimuli, where the participant learns new sound categories of complex sound ripples
(Ley etal. 2012); such findings suggest that categorical responses likely arise to speech due to the
learned categorical associations rather than because the stimulus is speech per se. Overall, repre-
sentations of speech in the primary auditory cortex are predominantly frequency based, though
they also exhibit nonlinear warping depending on learned categories (Coffey et al. 2016).

As we move away from the primary auditory cortex and into higher-order auditory regions such
as the superior temporal gyrus (STG), representations become more multifaceted and complex.
For speech inputs, this corresponds to receptive fields that contain multiple spectrotemporal peaks
(Leonard et al. 2024) corresponding to the phonetic features of each individual speech sound. In
contrast to the narrow-band frequency representations observed in the primary auditory cortex,
neural populations in the STG—a nonprimary auditory region just lateral to the primary audi-
tory cortex—exhibit receptive fields with complex modulation across both time and frequency
(Hamilton et al. 2021). As a consequence of their complex spectrotemporal tuning, neural re-
sponses in the STG are stronger for complex sounds, including speech, than for narrow-frequency
pure tones or noise (Zatorre et al. 1992), and thus they are ideally suited to discriminate speech
sound sequences in terms of their phonetic content.

Importantly, the generation of these more complex acoustic representations does not en-
tail deleting or discarding the lower-level narrow-band representations (Gwilliams et al. 2018);
rather, the lower-level representations have been found to be encoded in parallel to more complex
representations of the speech signal and encoded in neural activity for a long period of time.

The encoding of phonetic features in the STG has been shown both at the level of single neu-
rons (Leonard et al. 2024) and at the level of populations of neurons as recorded from the cortical
surface (Mesgarani et al. 2014, Oganian et al. 2023). Deriving features from the time—frequency
representation requires integrating information over time and emphasizing certain components
of the spectral content, as shown in Figure 1. By comparing the representations of these features
in the STG across the micro and meso scales (single neurons versus tens of thousands), we can
determine how the operations occurring at a single cortical column are integrated to give rise to
representations at the surface level.
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Populations of neurons as measured using electrocorticography (ECoG) have been shown
to respond to the phonetic features shared between phoneme categories rather than encoding
phoneme categories per se. For example, responses at a given electrode will be shared for all
phonemes that share a given feature (e.g., voiced, fricative, obstruent) (Mesgarani et al. 2014). The
encoding of phonetic features and their associated spectrotemporal receptive fields are intermixed
in a “salt and pepper” fashion (Mesgarani et al. 2014) with an overarching spatial organization of
the posterior STG encoding phonetic features at onset and the anterior STG encoding phonetic
features postonset (Hamilton et al. 2018).

When zooming in to the level of single neurons in the STG, phonetic features remain the
appropriate representational format, with no evidence for phoneme category encoding (Leonard
et al. 2024). When investigating single neuron encoding across different cortical layers, Leonard
et al. (2024) observed a high degree of heterogeneity in the tuning of different neurons, whereby
not all neurons were tuned to the same speech feature: Some neurons encoded phonetic features,
whereas others encoded loudness, and others encoded the speaker’s pitch of voice. Furthermore,
this tuning was not intermixed as was observed across the surface, but rather, neurons that encoded
similar speech properties localized to similar depths relative to the cortical surface. Overall, these
results suggest that the fundamental speech feature representation in the STG is not only the
phonetic feature but comprises other, highly redundant properties of speech as well. The fact that
all of these features spatially co-localize to the same cortical column emphasizes that polymorphic
representations not only are parallel in time but also are parallel in space, at the scale of microns.

These electrophysiology findings are corroborated by evidence from lesion studies. When in-
dividuals suffer left posterior STG damage poststroke or due to neurodegenerative disease, it can
lead to deficits in phoneme discrimination (Blumstein et al. 1977, Johnson et al. 2020, Mesulam
et al. 2019a, Robson et al. 2013). Furthermore, direct cortical stimulation to the left STG has
been shown to impair the ability to discriminate between consonants (Boatman et al. 1997) and
recognize distinct allophones as the same phoneme (Boatman 2004). This impaired phonemic
processing may underlie deficits in single-word comprehension, as the ability to recognize a word
often depends on perception of a single phoneme (e.g., boat /bout/ versus bone /boun/). A fascinat-
ing speech perception disorder, pure word deafness (PWD), also sheds light on these phonemic
processes. PWD is characterized by profound difficulties in understanding speech, though other
types of auditory perception and linguistic processing are relatively spared (Dumanch & Poling
2019, Poeppel 2001). Patients with PWD are aware of a sound when presented with speech,
but it is not intelligible to them; the perception has been described as “jabber” and “muftled”
(Buchman et al. 1986) or “meaningless. . .garbled sound” (Mendez & Rosenberg 1991) (see also
Poeppel 2001). While PWD has commonly been believed to require bilateral lesions to the au-
ditory cortex to result in the disorder, recent work suggests that damage to the left STG alone is
sufficient to cause PWD-like symptoms (Casilio et al. 2024). Thus, neural populations in the left
STG not only are active during phonetic processing but also are causally involved in its success.

Importantly, the feature representations in the ST'G have been shown to reflect not only the
time window of the speech sound itself but also information that occurs before (Keshishian et al.
2020) and even after the speech sound (Gwilliams et al. 2018). This means that the representations
in these neural populations are not strict static filters on the input but rather adapt in a state-
dependent manner. This could manifest in terms of spatially intermixed phonetic representations
interacting with one another (Bhaya-Grossman & Chang 2022, Yi et al. 2019) due to normalization
for other speech properties like pitch range (Johnson & Sjerps 2021) or due to integration on
information over an extended time window (Gwilliams et al. 2018). This is important because it
shows that the encoding of speech features in the ST'G is not just a recapitulation of their complex
spectrotemporal properties; rather, they are maintained in parallel with incoming speech input for
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the purposes of extracting higher-order structures of speech across sequences of units and nested
timescales (Gwilliams et al. 2022).

Another important cue in the speech signal represented in the primary cortex and STG is the
speech envelope. The envelope is computed as a weighted average of the energy across different
frequency bands in the input; spectral detail is removed, but critical temporal detail is retained
(see Figure 1). The rhythmic structure of the speech envelope reflects the linguistic unit of the
syllable. The syllable functions as an organizational unit with a critical role in grouping phonemes
into sequences. Importantly, the syllable conveys meaning beyond its internal phonemic content
(Blevins 1995), serving as a prosodic unit, relaying within-word stress information, and acting as a
structural scaffold for its phonemic constituents. Time-resolved neural recording techniques, in-
cluding electroencephalography, magnetoencephalography (MEG), and ECoG, have shown that
there is a representation of the syllable dissociable from, and extracted in parallel to, phonetic con-
tent (Doelling et al. 2014, Hamilton et al. 2021, Luo & Poeppel 2007, Oganian & Chang 2019).
The precise operation that derives syllabic information, and therefore the underlying format of
the syllabic representation, remains a matter of heated debate—namely, between an operation that
continuously tracks envelope phase information and one that tracks discrete and sparse syllabic
events. It is likely that both representations exist in parallel in distinct physiological formats (Ray
& Maunsell 2011).

The amplitude envelope is one of the strongest signals in the acoustic input, and it is encoded
very strongly in neural activity in auditory cortices (Kubanek et al. 2013). Research suggests that
altering the speech envelope of the input leads to issues in consonant recognition, vowel clarity,
and sentence comprehension (Ahissar et al. 2001; Drullman et al. 1994a,b), and individuals can
comprehend speech that maintains its temporal envelope despite significantly compromised fre-
quency details (Shannon et al. 1995). Together, all of the above suggests that the speech envelope
is an important auditory feature for speech comprehension.

Segmentation, Look-Up, and Composition of Morphemes Are Operations
Underlying Word Processing

The features discussed so far are robustly encoded in the acoustic signal, and therefore simple
linear or shallow nonlinear computations are sufficient to extract these features from the input.
The arbitrary nature of sound-meaning mapping requires, however, that symbolic and abstract
features are derived from the acoustic signal to make contact with the higher-order semantic and
structural information it contains (Barsalou 1999).

Here we propose that the critical shift from sensory to symbolic representation occurs at the
level of the morphological unit. A morpheme, the smallest unit of meaning or structure in lan-
guage (Aronoff & Fudeman 2022), encodes the meaning of a word, its grammatical function, and
its syntactic behavior. For example, the morphological breakdown of the English word arguments
would comprise argue-ment-s: The root morpheme argue relates to the core meaning of the word
and contains most of the semantic information, the derivational suffix -mzent is a functional mor-
pheme and serves to indicate the part of speech (noun) of the root, and the inflectional suffix -s
provides syntactic information that this noun is plural.

Morphological processing has been studied quite extensively in cognitive neuroscience. The
operations associated with morphological units have been proposed to be segmentation (iden-
tify the morphemes), look-up (extract the appropriate semantic and syntactic features), and
composition (combine the features to form a complex representation) (Gwilliams 2020).

One method that researchers have adopted to explore auditory segmentation of morpholog-
ical structure uses an information theoretic approach (Brodbeck et al. 2018, Gaston & Marantz
2018, Gwilliams & Davis 2022, Gwilliams & Marantz 2015). The approach is to quantify, for
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each phoneme of the speech input, how much information has been provided to help identify the
morphological unit being said. This can be computed under two metrics: surprisal and entropy.
Surprisal quantifies how likely a given phoneme is based upon the preceding phonemes within
the morphological constituent (Gwilliams & Davis 2022). If a phoneme is less likely, it has higher
information content than if it were more likely. Entropy quantifies how certain a given morpho-
logical outcome is based on the phonological sequence up to that point. If the morphological
outcome is very certain—for example, if the sequence so far is consistent with only one outcome,
as in avalan-, then the entropy is low (Shannon 1948).

This phoneme-by-phoneme incremental processing is very akin to the Cohort model of speech
perception (Marslen-Wilson 1975), which posits an incremental segmentation process for the
activation and ultimate identification of lexical items. Lexical and sublexical representations are ac-
tivated by the phoneme sequence and deactivated if subsequent acoustic or contextual information
is inconsistent with them (Marslen-Wilson 1987, Marslen-Wilson & Tyler 1980, Marslen-Wilson
& Welsh 1978). Modeling neural responses as a function of each phonemic input is akin to
modeling each incremental process hypothesized by the Cohort model.

Having segmented the speech signal for morphological units, the system needs to perform a
look-up operation on those units and thereby identify their semantic and syntactic properties.
"This occurs through the activation of semantic and syntactic features in relative proportion to the
likelihood of their occurrence in speech (Gaston & Marantz 2018). Each word comprises three
pieces—the root, derivations, and inflections—and depending on the type of morpheme being
“looked up,” the features extracted are different.

A root morpheme carries semantic properties and represents the core meaning of a given
word—for instance, the poet in poetical or the appear in disappeared. Accessing the semantic proper-
ties of root morphemes has been linked to the STG, the middle temporal gyrus, and the angular
gyrus (Binder et al. 2000, Friederici 2012, Hickok & Poeppel 2007, Indefrey & Levelt 2004).
Extracting these semantic representations, and its link to conceptual knowledge, is a key compo-
nent of language processing (Poeppel et al. 2012), and root morpheme access can be equated with
accessing the semantic features of a word.

By contrast, a derivational morpheme refers to a constituent (e.g., the -ic or -a/ in poetical)
that determines the part of speech of the word (e.g., noun, verb, adjective), and an inflectional
morpheme refers to a constituent that provides additional grammatical information about the
word (e.g., -s refers to plural, and -ed refers to past tense). Access to both types of syntactic
information has been linked to the inferior frontal gyrus, which has more broadly been associated
with syntactic processing (Carota et al. 2016, Marslen-Wilson & Tyler 2007, Sahin et al. 2009,
Whiting et al. 2015).

Finally, having accessed the semantic and syntactic information associated with the morphemes
of a word, those representations are combined into a complex whole. This process has primarily
been probed by comparing responses to valid and invalid compositional structures (e.g., farm-er
versus corn-er) or by comparing responses that are more or less compatible combinations. Both
approaches converge on the orbitofrontal cortex performing the compositional operation by com-
bining the semantic and syntactic properties of the morphemes into a whole word (Fruchter &
Marantz 2015, Neophytou et al. 2018, Pylkkinen & McElree 2007).

Breaking down lexical semantic meanings into fundamental bases to construct a quantifiable
representational space has long been a challenge. Previous studies tried to define such components
using semantic categories or attributes (Tong et al. 2022); however, recent advances in large lan-
guage models have been particularly advantageous for modeling these complex features of word
and multiword meaning in a data-driven manner. By training encoding models with vectorized
linguistic representations learned from these models and applying them to neuroimaging and
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electrophysiological data (Kell et al. 2018, Li et al. 2023, Yamins & DiCarlo 2016), researchers
are able to investigate how lexical semantic meanings are represented in the brain, extending the
previous success of this approach in sensory domains (Goldstein et al. 2022, Huth et al. 2016, Kell
etal. 2018, Li et al. 2023, Mitchell et al. 2008, Yamins & DiCarlo 2016, Zhang et al. 2020).

For example, the representations in the hidden layers of models such as GloVe (Pennington
et al. 2014) and word2vec (Mikolov et al. 2013) encode lexical information, such as the semantic
dimensions of the words, and syntactic features, such as parts of speech (Goldstein et al. 2022,
Huth etal. 2016, Mitchell et al. 2008, Zhang et al. 2020). From a representational standpoint, these
vectors would represent the outcome of the compositional stage of morphological processing.

Insight about the semantic component of morphological and lexical processing has come from
semantic impairments, which are characteristic of semantic-variant primary progressive aphasia
(svPPA), a progressive aphasia in which the epicenter of neurodegeneration sits primarily in the
left-greater-than-right but largely bilateral anterior temporal lobes (ATLs) (Gorno-Tempini et al.
2008, Patterson et al. 2007). Despite being able to accurately repeat words (Leyton et al. 2014) and
understand syntactically complex utterances (subject to limited vocabulary; Wilson et al. 2012),
individuals with svPPA show immense difficulty understanding word meanings, a symptom that
reflects a broader conceptual impairment in which knowledge gradually degrades as a function
of taxonomic specificity (i.e., a person with svPPA may understand the word horse but not zebra
and, later, animal but not horse; Mesulam et al. 2019a, Patterson et al. 2007). While unilateral
left anterior temporal lobectomies and strokes do not tend to have a drastic impact on language
on their own (Hermann et al. 1991, Tsapkini et al. 2011), the two ATLs working together are
theorized to function as a hub in the semantic network, linking domain-specific representations
together to build semantic concepts (Patterson & Lambon Ralph 2016, Patterson et al. 2007).
Prior work in stroke and primary progressive aphasia (PPA) has also implicated the left angular
gyrus as a site relevant for conceptual representation (Geschwind 1965, Price et al. 2015), which
may play a role in managing information more specific to thematic roles (i.e., “What do cats do?
Cats purr, cuddle, chase...”) rather than taxonomic relationships (i.e., “What type of thing are
cats? Cats are pets, animals, living things. . .”) (Schwartz et al. 2011).

While comprehension of single lexical items is also often measured in studies of aphasia, lexical
comprehension is a relatively coarse metric that belies a complex, multistage process (consisting of
auditory, phonemic, syllabic, morphological, and semantic components). Even so, lexical compre-
hension is actually relatively robust to injury following left hemisphere stroke, particularly as time
postinjury increases during the first year of recovery (Selnes et al. 1984, Wilson et al. 2023). Thus,
demonstrating a deficit in single-word comprehension does not necessarily provide high granu-
larity with respect to where that deficit occurred. However, when lexical comprehension deficits
(not clearly attributable to broader semantic impairment) do occur, they tend to be associated with
lesions to the left midposterior ST'G and sulcus (Hillis et al. 2017, Matchin et al. 2022) or with
larger lesions encompassing this territory (Rogalsky et al. 2022, Wilson et al. 2023); reperfusion
of this area has also been associated with a restoration of word comprehension abilities (Hillis
& Heidler 2002). Cortical stimulation in this region has been shown to impair responsiveness to
word comprehension tasks (Lesser et al. 1986) and to induce perceptual deficits at the single-word
level (Leonard et al. 2019).

Through Phrasal Composition, the Brain Generates Infinite Meaning
from Finite Means

Syntactic phrases, such as noun phrases (e.g., the fluffy brown and white dog) and verb phrases (e.g.,
cuddled ferociously), comprise multiple lexical items and together form a systematic structural whole.
The ability to flexibly combine and understand others’ novel combinations is one of the defining
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features of human language (Hauser et al. 2002). Yet, compositionality at the phrasal and sentence
levels is one of the hardest aspects of language to study, and so it remains an elusive part of language
processing.

Understanding how phrases are processed involves considering the processes by which lexical
items are combined to create higher-order structure and meaning. Meaning is derived not just
from single words but from the combinatorial processes that allow the emergence of complex
meaning and relations. In theory, the compositional operations that govern the combination of
morphemes to form words are the same as the operations that combine words to form sentences
(Matushansky & Marantz 2013, Punske 2023).

"To generate sentential meaning, words need to be combined under the syntactic rules that gov-
ern their combination. This often means linking words that do not occur in adjacent order; for
example, in the scientist smiled as the magnitude of her discovery sank in, the pronoun her needs to be
linked to the prior referent scientist to be correctly understood. This adds an important component
of difficulty because the system needs to maintain past words and concepts to appropriately com-
bine them with future words and concepts, therefore relying on parallel processing of multiple
inputs over time.

Composition, at its core, begins with the presence of two words that need to be combined,
such as adjective—noun minimal phrases like red boat. Bemis & Pylkkidnen (2011) used MEG to
contrast neural responses to a noun (e.g., boaz) that was preceded either by an adjective (e.g., red,
thus forming a minimal compositional phrase red boat) or by a short, meaningless character string
(e.g., rexn). Responses to the noun were stronger in the left anterior temporal lobe (LATL) when
it was part of a phrase than when it was not (Bemis & Pylkkinen 2013, Westerlund & Pylkkinen
2014).

Is this neural response driven by the syntactic operation that combines minimal phrases, or is
it a neural marker of the complexity of conceptual representation being created? In subsequent
studies, Pylkkinen and colleagues additionally modified the specificity of the adjective and noun
to assess whether this changed the result. Zhang & Pylkkinen (2015) found that using more spe-
cific nouns (such as replacing boat with canoe) decreased the magnitude of response in the LATL,
whereas replacing a generic modifier with a more specific one (e.g., replacing mzeat in meat stew with
lamb) strengthened the effect. Because in all cases the same adjective—noun minimal pair is being
used, this effect cannot be explained by a syntactic operation that combines adjectives and nouns
regardless of their content. Nor can it be explained by the overall specificity (or frequency) of the
constituent words. Overall, it suggests that the operations that support basic conceptual struc-
ture building are performed in the LATL, which is incremental in its construction of composite
concepts.

To investigate how the brain may process compositional meaning, studies have compared read-
ing or listening to sentences with reading or listening to lists of unconnected words. Neuroimaging
studies have shown that this comparison elicits a significant difference across many brain regions
associated with language processing, including the bilateral anterior temporal poles, bilateral lat-
eral temporal regions, and left hemisphere frontal regions (the inferior frontal gyrus and middle
frontal gyrus) (Stowe et al. 1998, Vandenberghe et al. 2002). Using techniques capable of resolving
the timing of increased activity, studies have shown that the difference between these two condi-
tions grows over the course of stimulus presentation, possibly indexing construction of meaning
over time (Fedorenko et al. 2016, Pallier et al. 2011). This is not to say that each lexical item must
be processed serially as it is perceived. Brain activation in language-selective regions is insensi-
tive to some word order swaps that render the sentence ungrammatical but not indecipherable
(Mollica et al. 2020), and thus the operations performed on the linguistic information that result
in comprehension may be robust to speech errors in word order.
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While some theories of syntax in the brain suggest that different types of syntactic opera-
tions occur in different spatial locations (Caplan et al. 2016), current theories suggest that the
key distinction may be between regions predominantly engaged in producing syntactic utter-
ances and those engaged in understanding syntax and its rules (Matchin & Hickok 2020). These
theories implicate temporoparietal regions including the left middle temporal gyrus and the neigh-
boring superior temporal sulcus in the role of understanding syntax. Individuals with strokes in
these regions struggle with tasks that rely on syntactic comprehension, including sentence—picture
matching for semantically reversible sentences (e.g., “The girl washes the boy” versus “The boy
washes the girl”; Thothathiri et al. 2012), passive sentences (e.g., “The boy was hugged by the
girl”; Caplan et al. 2016), and syntactically noncanonical sentences (e.g., “The carrot that the
small rabbit ate is in the garden”; Rogalsky et al. 2018); they additionally struggle to make accu-
rate sentence grammaticality judgments (Wilson & Saygin 2004). Findings in PPA resulting from
temporoparietal damage corroborate these results (Amici et al. 2007, Mesulam et al. 2019b). For
arecent detailed review regarding syntax in the brain, the interested reader is referred to Matchin
& Hickok 2020).

A promising future direction for understanding composition at the level of phrases and sen-
tences is the use of large language models to derive candidate compositional representations
(Brown et al. 2020, Devlin et al. 2018). In this case, the representation of dog might be different
between the contexts the big angry dog and the shiny porcelain dog, thereby embedding the contex-
tual meaning into the meanings of the individual words. This feature of incorporating a context
window has been used to investigate the timescale of information integration (Jain & Huth 2018,
Keshishian et al. 2021) and also to model predictive processes during natural speech processing
(Goldstein et al. 2022, Huth et al. 2016, Mitchell et al. 2008, Zhang et al. 2020).

In addition, researchers have used multimodal language models, which have a joint optimiza-
tion function to link captions to the correct images. They have found that compared with models
that operate on text only, the visually grounded models learn semantic representations that are
more embedded in the physical realization of the object (e.g., animate, inanimate) and better
aligned with human intuition and behavior (Zhang et al. 2021). Those semantic grounding models
are also offered as computational approaches to explicitly test hypotheses regarding the semantic
hub and embodiment in the cortical representations (Tomasello et al. 2018).

Highly Parallel, Highly Redundant

One important theme that emerges from our review is that processing across different hierarchical
levels of language unfolds in a highly parallel manner. That is, many processes happen at the
same time, in the same spatial region of the brain, and across multiple levels of representation
simultaneously. These processing streams are not independent; rather, they engage in constant
interaction to mutually generate the most likely interpretation given the dependency structure
of language across its levels of representation. We believe that this parallel nature of processing
is precisely what makes the system robust against noise, ambiguity, and variability in the sensory
speech signal. We also believe that this allows the system to be more efficient because a given
region of the brain has access to multiple levels of representation that can serve to resolve noise or
ambiguity without having to wait for several rounds of feedforward/feedback loops across regions
to reach the correct interpretation.

For example, knowing that a word is likely a noun given the sentence context influences the
likelihood of what sounds will occur in that word (a “downward influence” toward the sensory
input) as well as the likely meaning of that word (an “upward influence” toward the symbolic
referent). Such mutual constraints guide interpretations of the current language input (i.e., “What
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is happening now?”) in addition to influencing interpretation of subsequent inputs (i.e., “What is
likely to happen next?”) and even influencing the interpretation of previous inputs (i.e., “Do I
need to update what I think happened earlier?”). This dynamic system encourages stability and
flexibility in processing by ensuring access to multiple formats of representation, from multiple
time steps, at the same time.

This observation is in stark contrast to serial bottom-up processing architectures, whereby a
given process does not begin until the previous one has finished through to completion (Gaskell
& Marslen-Wilson 1997). Such serial processing models typically assume modularity in spatial or-
ganization of function, which our review also indicates is misleading—a given region of the brain,
such as the STG, encodes multiple speech features, including phonetic contrasts, speaker relative
pitch, lexical stress, and statistical likelihood. The serial, modular view is therefore not supported
by our overview of the literature. Instead, representations of speech properties, and the operations
that generate and manipulate those representations, exist within a highly parallel spatiotemporal
regime (McClelland et al. 1987), which can look both forward and backward in time.

A second important theme that emerges from our review is that neural representations are
highly redundant. This redundancy stems from two sources. One, perhaps underappreciated,
component of language is that its levels of structure are highly correlated and have predictable
autocorrelation properties. In practice, that means that the redundant information across levels,
thanks to statistical regularity, can be (and is) leveraged by the brain to constrain the ultimate solu-
tion. The second is that the brain compounds upon the inherent redundancy of the language input
by generating many similar but slightly different representations of the input, and it maintains all
of them for an extended period of time. Therefore, “efficient processing” from the brain’s per-
spective does not mean being representationally frugal; it means being representationally greedy.
Any and all information that is available to the system is used by the system, in addition to the
brain generating highly redundant formats of representations from the input, which emphasize or
minimize particular aspects of the signal. We believe that this extensive redundancy is what allows
the language system to perform flexibly in different scenarios for different purposes, where each
scenario or task may rely upon different formats of representation.

CONCLUSION AND FUTURE STEPS

In this article, we have reviewed a broad body of research to synthesize how the human brain
transforms sound into meaning in the service of speech comprehension. By organizing this en-
deavor into identifying the representations, operations, and information flow, we believe that it is
possible to make tangible progress toward this ambitious goal.

One pressing future direction comes from the observation that much less is understood about
the processes implemented at the semantic and syntactic levels than at the acoustic and phono-
logical levels, and much less is understood about the operations that the brain applies compared
with the representations it generates. We believe that this can be partly attributed to the analyti-
cal tools available. Representations can be hypothesized a priori based upon linguistic or auditory
theory; they can be quantified and converted into numbers that can then be correlated with neu-
ral responses. Operations, by contrast, exist at the transition between representational states. That
means that operations can only be inferred indirectly, by comparing the two representations that
are hypothesized to be the input and output of that operation. This is made additionally prob-
lematic by the reliance on linear analytical methods, which may be unable to capture the true
nonlinear transformation. In a similar vein, much more is known about the phonetic levels of
processing, partly because the hypothesis space benefits from its linear proximity to the sensory
input, which can be easily described in linguistic and auditory neuroscience terms. Higher-order
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linguistic structures are many more nonlinear transformations away from the sensory input, and
the operations that govern them are also more likely to be nonlinear and to incorporate informa-
tion across longer time constants. A key step forward in addressing both of these shortcomings
will be to implement nonlinear analytical methods to uncover the operations implemented in the
system, all the way from sound to meaning. This will likely benefit significantly from deep learning
tools—models that have been performance optimized for a particular language task to generate
hypotheses of nonlinear operations (e.g., Caucheteux et al. 2022) as well as general nonlinear
analytical tools that can be used for signal processing (e.g., Keshishian et al. 2020).

Opverall, by taking advantage of the impressive technological advances in analytical methods,
computational models, and neural recording techniques, it will be possible to uncover the end-to-
end computational architecture that governs higher-order language processing. This will entail
powerful naturalistic experimental designs to fully engage the comprehension system and assis-
tance from deep learning to model complex symbolic operations to complete our understanding
of language comprehension in the human brain.
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