Neurolmage 132 (2016) 320-333

journal homepage: www.elsevier.com/locate/ynimg e

Contents lists available at ScienceDirect <
Neurolmage

Neurolmage

Functional characterisation of letter-specific responses in time, space and
current polarity using magnetoencephalography

@ CrossMark

L. Gwilliams *”*, G.A. Lewis ?, A. Marantz ¢

2 Department of Psychology, New York University, United States
> NYUAD Institute, New York University Abu Dhabi, United Arab Emirates
© Department of Linguistics, New York University, United States

ARTICLE INFO

Article history:

Received 8 September 2015
Accepted 18 February 2016
Available online 27 February 2016

Keywords:

fROI

LCD model

Source estimation
VWFA

Visual word processing

ABSTRACT

Recent neurophysiological evidence suggests that a hierarchical neural network of low-to-high level processing
subserves written language comprehension. While a considerable amount of research has identified distinct
regions and stages of processing, the relations between them and to this hierarchical model remain unclear. Mag-
netoencephalography (MEG) is a technique frequently employed in such investigations; however, no studies
have sought to test whether the conventional method of reconstructing currents at the source of the magnetic
field is best suited for such across-subject designs. The present study details the results of three MEG experiments
addressing these issues. Neuronal populations supporting responses to low-level orthographic properties were
housed posteriorly near the primary visual cortex. More anterior regions along the fusiform gyrus encoded
higher-level processes and became active ~80 ms later. A functional localiser of these early letter-specific re-
sponses was developed for the production of functional regions of interest in future studies. Previously
established response components were successfully grouped based on proximity to the localiser, which
characterised location, latency and functional sensitivity. Unconventional anatomically constrained signed
minimum norm estimates of MEG data were most sensitive to the primary experimental manipulation,
suggesting that the conventional unsigned unconstrained method is sub-optimal for studying written word

processing.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction
Primary responses to written words

Tarkiainen et al. (1999) was one of the first studies to successfully
disassociate the neural dynamics of visual feature analysis and letter-
specific recognition, in terms of both neuronal location and response
timing. Employing magnetoencephalography (MEG), the authors iden-
tified two primary neural responses to written words, interpreted as an
early linguistically insensitive response (Type One), and a later letter-
specific response (Type Two — not to be confused with Type I & II
type errors in the statistical sense). They interpret these responses as
reflecting the role of the left inferior occipital-temporal cortex in
supporting the processing of letter strings during visual word process-
ing, and propose that the Type Two signals may act as the first port of
call when filtering valid letter strings for further lexical processing.

* Corresponding author at: 10 Washington Place, 6th Floor, New York, NY 10003,
United States.
E-mail address: laura.gwilliams@nyu.edu (L. Gwilliams).

http://dx.doi.org/10.1016/j.neuroimage.2016.02.057

A wealth of research utilising a wide range of methodologies has
since been conducted on the neural processes underlying written
language comprehension. Much of this research has focused on identi-
fying distinct regions and stages of processing that are specifically re-
sponsive to linguistic content. Table 1 below outlines a number of
such response components, which overlap to different extents in laten-
cy, spatial location and lexical sensitivity.

Recent investigation has suggested that rather than a single “lexical-
ly-sensitive region” of the brain, there exists a collection of hierarchical
networks set along the occipital-temporal lobe and fusiform gyrus. The
Local Combination Detector (LCD) model (Dehaene et al., 2005), for ex-
ample, proposes graded sensitivity along the entire occipital-temporal
cortex to abstract visual stimuli (i.e., written word forms) coded in a
posterior-to-anterior progression. Under this account, posterior regions
closest to the primary visual cortex are less selective and become active
with less proximity to real words, while the most anterior portion of the
fusiform overlapping with the Visual Word Form Area (VWFA) has
greatest selectivity for high-level visual features.

Initial neuropsychological support for the LCD model was gathered
from hierarchical neural detectors in macaque monkeys (Booth and
Rolls, 1998; Rolls, 2000), finding neurons located anteriorly to support
more abstract processing than populations located posteriorly. The
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Table 1

Summary of response components and regions specifically associated with early written word processing. VWFA = “Visual Word Form Area”; LFA = “Letter Form Area”; WFA = “Word
Form Area”; EEG = “Electroencephalography”; fMRI = “Functional Magnetic Resonance Imaging”; ECoG = “Electrocorticography”.

Response/region Latency Location(s) Sensitivity

Method(s) Representative studies

Type One ~100 ms V1; occipital cortex Luminosity, visual complexity; non-linguistic MEG Tarkiainen et al. (1999); Helenius et al.
properties (1999)

Type Two ~140 ms Temporal-occipital junction Symbol strings vs. Letter strings, legibility of MEG Tarkiainen et al. (1999); Helenius et al.
letter strings (1999)

M130 ~130ms Occipital lobe Orthographic/surface properties (e.g., bigram MEG Solomyak and Marantz (2009, 2010);
freq., orthographic affix freq.) Lewis et al. (2011)

M170 ~170 ms Occipital-temporal cortex and ~ Morphological properties (e.g., lemma freq., MEG Solomyak and Marantz (2009, 2010);
fusiform gyrus morphological affix freq., transition probability) Lewis et al. (2011); Zweig and

Pylkkdnen (2009); Fruchter et al.
(2013)

VWFA ~180 ms Fusiform gyrus; Talairach High level features such letter shapes; real EEG & fMRI Cohen et al. (2000, 2002); Dehaene
co-ordinates (x = —43, words vs. consonant strings et al. (2001, 2002)
y=-—54,z=—-12)

LFA ~160 ms Occipital-temporal cortex; MNI Consonants vs. false fonts ECoG, MEG & fMRI Thesen et al. (2012)

co-ordinates (—40, —78, —18)
WFA ~225ms Posterior fusiform gyrus; MNI
co-ordinates (—46, —52, —20)

Real words vs. consonants

ECoG, MEG & fMRI Thesen et al. (2012)

generalisation of these results to humans was directly tested later by
Vinckier et al. (2007). Using Functional Magnetic Resonance Imaging
(fMRI), they compared responses along the occipitotemporal cortex to
visually presented items differing systematically in their similarity to
valid words: 1) false fonts; 2) strings of infrequent letters; 3) infrequent
bigrams; 4) infrequent quadrigrams; 5) frequent quadrigrams; and 6)
real words. Consistent with the LCD model, they found gradient sensi-
tivity to real words in a posterior-to-anterior progression. The authors
characterised the specialisation of responses along the “visual word
form system” as supporting evidence for a graded sensitivity anterior
from the occipital lobe towards the defined location of the VWFA.

Recent work by Lewis et al. (2011) examined the influence of lin-
guistic variables of varying “abstractness” on an MEG component (puta-
tively overlapping with the VWFA) associated with morphological
detection (the MEG M170; Solomyak and Marantz, 2009, 2010). Re-
stricted ROI analyses of posterior and anterior portions of the M170
yielded distinct sensitivities to linguistic variables: the anterior ROI
showed an effect of transition probability from stem to suffix of appar-
ently morphologically complex words, whereas the posterior portion
was only sensitive to surface (high-level n-gram) frequency. Transition
probability effects were associated with activation of abstract morphe-
mic representations, and surface frequency effects with activation of
concrete n-gram representations. The sources set more anterior upon
the fusiform gyrus therefore appeared to code more abstract represen-
tations. This finding is in corroboration to the LCD model as well as
Vinckier et al.'s (2007) results, and suggests that even within a single
evoked response component, defined by the timing of a peak response
over MEG or Electroencephalography (EEG) sensors, not all sources
may display the same sensitivity.

Later work by Thesen et al. (2012) employed fMRI and time-
sensitive methodologies including MEG and intracranial EEG recordings
to identify distinct temporal and spatial attributes of a “letter-form area”
(LFA) and a “word-form area”. Findings included letter-selective
responses peaking 160 ms post-stimulus onset, around 60 ms earlier
than activation of the VWFA (Cohen et al., 2000, 2002). The authors
propose a feed-forward structure of responses, whereby the system
assesses information for word-likeliness at different stages of process-
ing, and subsequently carries it forward through the system. This im-
plies that access to the visual word form (VWF: Warrington and
Shallice, 1980) is first fed by identification of valid letters, and then
valid word-shapes, suggesting that the first stage of visual word
recognition is not VWF access but rather identification of valid letters
in posterior regions.

Taken together, these findings strongly suggest that the visual sys-
tem is composed of neuronal populations that support graded low-to-

high level processing in a posterior-to-anterior arrangement. As such,
established response components and regions can be placed along this
graded visual processing system, both to index the complexity of pro-
cessing they support and to assess their similarity to other response
components.

Methods of source estimation

As illustrated, investigation into the neurophysiological underpin-
nings of visual word processing has focused on categorising stages of
processing based on information such as timing, location, and sensitivi-
ty of particular neural responses. An additional dimension that has been
used in methodologies that measure electrical current directly, either
from the cortical surface (Electrocorticography: ECoG) or through the
skull (EEG), is the polarity of the electrical current (in this case, relative
to the reference electrode). For example, the N400 component is de-
fined by negative current potential, and the P600 by a positive current
potential. Although polarity relative to a reference electrode is arbitrary,
activity with opposing polarities reflect distinct response components.
Directionality is therefore an important dimension for characterising re-
sponses in these methodologies.

MEG does not measure the electrical current in the brain directly,
but rather the magnetic field generated around the brain from which lo-
cation, amplitude and direction of neuronal currents can be estimated.
In many methods of source localisation, including the MNE software
used in this paper, source estimation is achieved by placing a current di-
pole at each source to be estimated, spread across the brain's volume or
across the cortical surface. Six co-ordinates are required to characterise
a dipole vector within this MRI co-ordinate space: three to position the
origin and three to position the vector tip. The method of deriving a
single-value current estimate depends on the orientation constraint
applied. “Free orientation” applies no constraint on the dipoles’
orientation, and amplitude is estimated from the vector's norm
(length). Consequently, amplitude always has a positive value, and is re-
ferred to as “unsigned”. In “fixed orientation” the dipole is cortically
constrained by being projected onto the axis normal to the cortical sur-
face. The current estimate is then calculated from the norm of the
projected vector - assigned a positive value when the dipole is directed
out of the cortical mass, and negative when oriented into the cortical
mass. As cortically constrained estimates can realise either positive or
negative values, they are referred to as “signed”. The vast majority of
MEG studies have adopted the convention of using free orientation in
source reconstruction, thus removing directional information.

Cortically-constrained, signed estimates model the physiology of the
cortical mass, thus making it the most anatomically motivated method
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given the hypothesised source of the MEG signal in pyramidal cells of the
cortex, which are oriented perpendicular to the cortical surface
(Hamadldinen et al., 1993). Furthermore, current flowing from the base
of a pyramidal cell to the pial surface is likely to support distinct process-
es from neuronal populations whose current flows from the surface into
the cortical mass; however, the exact differences between polarities of
the current are poorly understood (da Silva, 2010). Assuming that
switches in polarity mirror distinct responses, unsigned free orientation
loses one dimension of discrimination. As a consequence, neuronal
populations whose current shifts from one polarity to another may be in-
correctly characterised as displaying just one rather than two separate
responses. Furthermore, the timing of distinguished response peaks
may be misidentified due to erroneous averaging (see Fruchter and
Marantz, 2015).

One complication of using fixed orientation, where sources are fit
perpendicular to the surface, is caused by the convolution of the cortex.
Fixed orientation results in the localisation of the reconstructed current
as outgoing activity on one side of a sulcus and ingoing on the other side.
One of the localisations and directionalities represents the “true” source
of activity, while the other represents a reconstruction “bleed”.
Averaging positive and negative sources together would lead to a
shallower estimate of source amplitude, and thus reduce sensitivity to
experimental manipulations. Care must therefore be taken not to cancel
out activity by selecting both positive and negative sources when aver-
aging over a ROI; for example, anatomical regions often encapsulate
sources from both sides of a cortical fold, which would include both pos-
itive and negative data estimates if utilising a cortically constrained
method of signing data. Instead, a region needs to be selected in such
as way that the inclusion of opposite polarity is minimised.

Despite extensive investigation into the different methods of gener-
ating source estimates of EEG and MEG data, there is little study into the
consequences of using signed versus unsigned estimates in terms of
sensitivity to experimental manipulations across subjects. Comparisons
have instead focused on the spatial accuracy of locating a source in data
simulations when using free, fixed and loose dipole constraining param-
eters, often in a single subject. Such work has advocated the advantages
of incorporating anatomical constraints on source orientations to avoid
over-estimating the spatial extent of activity (Chang et al., 2013; Dale
et al., 2000; Hauk, 2004; Lin et al., 2006; Liu et al., 1998, 2002). To our
knowledge, only one study has considered the implications of activity
polarity relative to experimental sensitivity (Fruchter and Marantz,
2015, Appendix B), although comparing the functional differences be-
tween methods was not the main purpose of the experiment. The cur-
rent study therefore focused on the relative experimental sensitivity of
two methods of source reconstruction (free unsigned, fixed signed)
rather than spatial accuracy. Based on this comparison we determined
whether the sign of MEG data is a useful dimension to retain, and
characterised the directionality of Type Two responses relative to the
cortical surface. The dataset employed a FreeSurfer average brain to lo-
calise responses, and did not combine MEG data with individual subject
structural MRIs — information that is not always available to re-
searchers. It must therefore be stressed that present results aimed to
compare experimental sensitivity of signed and unsigned estimates
and not accuracy in localisation. If, in spite of this inherently imperfect
estimation, using cortically constrained methods proved to be a superi-
or method, it would suggest that the sign is an important aspect of the
signal to retain.

Letter-specific functional ROI

The use of functionally defined regions of interest (fROIs) is frequent
with methodologies such as fMRI, but is not common practice with
MEG. This technique involves running an orthogonal experimental
task known to robustly evoke a functionally specific region of the
brain, with subsequent analysis of the same region for a critical manip-
ulation of interest in a separate experiment (see Poldrack, 2007 for a

discussion of fROIs in fMRI). This “localiser”, which is typically run on
the same sample of participants during the same experimental session,
allows for a motivated method of selecting a particular region of the
brain to analyse.

Importantly for the present purposes, if the fROI is identified using
threshold-based cluster tests (explained in detail below), it avoids the
complication of polarity striping that comes along with using fixed ori-
entation. This is because the fROI will consist of a uni-directional set of
sources, which will match the response of interest if the processes un-
derlying the localiser and the critical experiment are the same. Further-
more, it has advantages over anatomically defined regions in avoiding
analysing larger areas than necessary (a problem when correcting for
multiple comparisons across space, and when averaging activity within
a given ROI), and is not constrained by borders between parcellated re-
gions. Thus, if the localiser truly identifies the same underlying re-
sponse, statistical power should be increased, and the analysis will be
less susceptible to Type I errors.

Given the statistical and theoretical advantages of utilising a localiser
of functionally specific activity, we assessed whether fROIs of early
letter-specific responses could be created by results of a reduced version
of the Tarkiainen paradigm. To achieve this, we replicated a study
known to evoke both lower- and higher-level lexical processing -
Solomyak and Marantz (2010: henceforth “S&M”) involving a visual
lexical decision task of mono-morphemic and bi-morphemic words.
The original study's main finding was that activity around 170 ms in
the fusiform gyrus (M170) was modulated by transition probability
from stem to suffix of the morphologically complex words, as well as
by morphological but not orthographic affix frequency. The M170 re-
sponse component appeared to index high-level processes sensitive to
sub-lexical (i.e., morphological) structure. Earlier and more posterior
processing at the M130 was sensitive only to surface properties of the
stimulus, whereby activity was modulated by orthographic affix
frequency.

Testing the utility of Tarkiainen et al.'s paradigm as a localiser impor-
tantly allowed us to assess whether cluster-based fROIs can overcome
the issue of activity cancellation of positive and negative sources when
using cortically constrained estimates. Further, if lexical variables from
the S&M replication modulate activation of the region(s) shown to dis-
play Type Two responses in the abridged Tarkiainen design, it would
suggest that the Type Two response can be used to localise the lower
and higher level lexical processing as identified in S&M. For the present
purposes, this would enable a functional comparison between neuronal
populations underlying the Type Two component and other established
responses and regions in the literature.

Aims

The principle aim was to establish the location, timing, and function-
ality of the Type Two response relative to associated regions
(e.g., VWFA, letter-form area, word-form area) and responses
(e.g., M130, M170) defined in the literature, as well as the posterior-
to-anterior progression of higher-level processes more broadly. The
original Tarkiainen et al. study employed multiple dipole modelling
analysis, which does not provide information regarding the spatial cov-
erage of response-specific activation in a region. To fully ascertain the
spatio-temporal extent of Type Two activity, we ran an English-
adaptation of Tarkiainen et al.'s (1999) study while recording neural re-
sponses with MEG. We then conducted a distributed source analysis to
locate brain regions most sensitive to our critical manipulations.

The second aim was to develop a localiser of early letter-specific ac-
tivity for use as a fROI in future experiments. To do so, we identified a
manageable abridgement of the Tarkiainen paradigm to be adminis-
tered as an orthogonal task within the same recording session as a
replication of the S&M study — consisting of a visual lexical decision
task of mono-morphemic and bi-morphemic words. We examined the
influence of the lexical variables from S&M on activity in the regions
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identified by the localiser to determine whether the Type Two response
taps into the same neuronal populations as the M130 or M170 compo-
nents. Determining the functional sensitivity of these regions would
allow us to: 1) make stronger connections with other MEG responses,
following aim one above; 2) position the regions supporting the Type
Two response relative to the hierarchical LCD model; and 3) determine
whether underlying neural populations are shared between compo-
nents, allowing the Type Two responses to be used as a localiser of
letter-specific activity more broadly construed.

In aiming to characterise the Type Two response, the final goal of this
study was to ascertain the direction of the neural current at the source of
the recorded magnetic field with respect to the cortical surface. This
purpose is built upon the assumption that a shift in polarity indexes a
distinct neural response, and that retaining the sign of activation avoids
loss of evoked responses due to averaging. Ultimately, we assessed
whether using signed estimates allows for greater ease in discriminat-
ing neural responses in comparison to unsigned source estimates. To
avoid the issue of averaging over positive and negative estimates, all
analyses employed a threshold-based permutation cluster test to iden-
tify spatial regions that elicit activation of the same polarity.

To address these questions, we conducted three MEG experiments:
1) a full Tarkiainen et al. (1999) replication, 2) an abridged localiser,
and 3) an S&M replication.

Method
Participants

Participants in all three experiments were right-handed native
English speakers with normal or corrected-to-normal vision and were
recruited from the NYU Abu Dhabi community. Written informed con-
sent was provided by all participants prior to data collection. The
Tarkiainen replication experiment included 16 participants (6 females,
mean age = 23.8, SD = 4.5, median = 22, range = 18-31). The
abridged localiser and S&M replication experiment included 24
participants (17 females, mean age = 21.9, SD = 6.18, median = 20,
range = 19-50).

Materials

Tarkiainen replication

Stimuli were an English adaptation of materials originally developed
by Tarkiainen et al. (1999). There were 950 items in total, consisting of
four different categories of stimulus: i) pure Gaussian noise; ii) single
element: one letter (total of 25 letters, without the letter “O”) or one
geometrical symbol (a triangle, diamond or square); iii) two-element:
two-letter English syllables (25 different syllables) or two-element
symbol strings (four possible combinations of a triangle, diamond,
square or circle): and iv) four-element: four-letter English words (50
different words) or four-element symbol strings (four combinations of

ii) One-element

i) Pure Noise

iii) Two-element

triangle, diamond, square or circle). All four-letter words two-syllable
common English nouns (e.g., SODA, PONY, ATOM). Letters, syllables
and words were embedded in four different levels of Gaussian noise, in-
creasing from 1, 8, 16, to 24. The Gaussian noise was zero centred, and
the variance of the noise was set to 0.0234, 0.0938, 0.375 and 1.5, re-
spectively. Symbols of all lengths were always presented in the lowest
noise, and served as controls for the low-noise letters, syllables and
words. Items in noise levels 1 and 8 were clearly visible, whereas
noise level 16 made identification more difficult, and items at noise
level 24 were extremely difficult to identify. Fig. 1 shows examples of
these stimuli.

Abridged localiser

A subset of the original stimuli was used for the localiser: the
four-element (four letter words and length-matched symbols) and
one-element items (single letter and single symbol), in the
lowest and highest noise levels. This resulted in a subset of 300 trials
(50 trials x 6 conditions).

S&M replication

The S&M replication experiment was a lexical decision task of 530
items, including 265 English words that served as critical stimuli.
These words were split into a series of five conditions, with 53 items
per condition. 1) Truly Complex Free items contained a stem morpheme
whose orthography is unchanged when combined with a suffix
(e.g., “mile” is orthographically identical when appearing in “mileage”).
Furthermore, the meaning of the stem when combined with a suffix
was the same as its meaning in isolation — mileage means the number
of miles. 2) Truly Complex Bound items contained a stem morpheme that
changes its orthography when combined with a suffix (e.g., “social”
loses the final ‘L’ to become “sociable”). But again, the meaning of the
stem is maintained in the complex form. 3) Pseudo-Complex items
such as “trolley” contained a stem morpheme whose use in isolation
has an unrelated meaning to that of the complex word (e.g., “troll” is se-
mantically unrelated to “trolley”). 4) Unique Stem items such as “excur-
sion” did not contain a stem morpheme that appears in isolation
(i.e., there is no such word as “excurse”). However, their form and
meaning matched that of productively formed words with the same
suffix — for example, “excursion” means “the event of going on a trip”
in the same way that “explosion” means “the event of blowing up”.
5) Pseudo-Unique Stem items such as “winter” also did not contain an
attested stem morpheme, but their form and meaning did not match
productively formed words with the same suffix — “winter” does not
mean someone who does something as an occupation, in the way that
“baker” means someone who bakes.

The collection of items varied in their values on a range of lexical
variables known to modulate early letter-specific activity, presented in
Table 2 below.

iv) Four-element

ATOM :
ATOM -

GA
GA

Symbols

Fig. 1. Full set of stimuli used in the experiment. All are English adaptations of those used by Tarkiainen et al. (1999).
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Table 2
Lexical statistics of S&M replication experiment. LM = Log of the Mean; OLF = Orthographic Log Frequency; MLF = Morphological Log Frequency; LF = Log Frequency; TP = Transition
Probability.
Condition Bigram LM Affix OLF Affix MLF Surface LF Lemma LF Log TP
M SD M SD M SD M SD M SD M SD
Truly Complex Free 3.63 0.14 5.51 0.59 4.68 0.39 1.8 0.55 3.08 0.56 1.28 0.7
Mileage
Truly Complex Bound 3.53 0.13 5.07 0.4 445 037 1.75 0.55 249 0.72 0.75 0.66
Sociable
Pseudo-Complex 3.54 0.12 5.16 0.56 4.1 0.83 1.65 0.63 2.78 0.97 1.29 0.71
Trolley
Unique Stem 3.59 0.15 5.16 0.46 4.13 0.65 1.69 0.72 NA NA NA NA
Excursion
Pseudo-Unique Stem 2.54 0.15 531 0.57 4.22 0.84 1.61 0.58 NA NA NA NA
Winter
Procedure 60 s, and participants were asked not to blink during stimulus presenta-

All participants' head shapes were digitised using a hand-held
FastSCAN laser scanner (Polhemus, VT, USA) to allow for co-
registration during data preprocessing. Five points on each participant's
head were also digitised: just anterior of the left and right auditory
canal, and three points on the forehead. Marker coils were later placed
at the same five positions to localise each participant's skull relative to
the sensors. These marker measurements were recorded just before
and after the experiment in order to track the degree of movement dur-
ing the recording.

At the beginning of each of the three experiments, participants com-
pleted a practice session outside of the machine to ensure full under-
standing of the task prior to entering the magnetically shielded room.
The Tarkiainen replication was recorded in one session, while the S&M
replication and localiser were recorded together in a separate session.

MEG data were recorded continuously using a 208 channel axial gra-
diometer system (Kanazawa Institute of Technology, Kanazawa, Japan),
with a sampling rate of 1000 Hz and applying an online low-pass filter
of 200 Hz.

Stimuli in all three experiments were displayed using Presentation
software. Stimuli were projected onto a screen 85 cm away from the
individual's face.

Tarkiainen replication

Stimuli were organised into four blocks, so that all of the items with-
in a single block contained the same stimuli type; i.e., all of the single-
element items were within a single block, and all of the four-element
items were displayed in a separate block. There were 8 possible block
orders, and two participants were allocated to each block-order. The
order of stimulus presentation was randomised within conditions/
blocks but was the same for all subjects. It was ensured that the same
word did not appear within 10 trials of presentation to avoid repetition
effects.

Each item was presented in a centrally placed rectangular patch
(~12.7 x 5 cm), and was displayed on the screen for 60 ms witha 2 s
inter-stimulus interval. Participants were instructed to focus on the im-
ages and to verbally report the item if a question mark appeared. The
prevalence of these question-mark trials was 5% (40 out of 950 trials)
and served to aid concentration. There were no question-mark trials
during the pure noise block. As this block was 20% shorter, it was easier
to maintain concentration. The whole experiment lasted around 40 min.

Abridged localiser

Stimuli were presented using the same parameters as the full para-
digm. Unlike the full Tarkiainen replication, stimulus order was fully
randomised within and between six blocks of presentation so that
each block contained a mixture of the six types of stimuli; this was
done in order to make the task more engaging. Each block lasted around

tion to minimise artefacts in the MEG recording. No overt task was
employed due to the brevity of the paradigm; participants were simply
asked to pay attention to the items as they appeared on-screen. The
localiser took around 6 min.

S&M replication

Each trial began with a fixation cross (“+") for 400 ms, followed by
the critical item for 2 s. Participants were asked to indicate whether the
item was a word or not by pressing one of two buttons with their
left hand. No feedback was provided. Order of stimulus presentation
was fully randomised, and each participant received a unique
randomisation. The experiment was split into 4 blocks and lasted
around 20 min.

Analysis

Data from all three experiments underwent the same preprocessing
steps. The continuous MEG data were first noise-reduced by utilising
eight magnetometer reference channels located away from the
participant's head, using the Continuously Adjusted Least Squares
Method (CALM; Adachi et al., 2001), with MEG160 software (Yokohawa
Electric Corporation and Eagle Technology Corporation, Tokyo, Japan).
The noise-reduced MEG data was imported into MNE-Python (see
Gramfort et al., 2014), low pass filtered at 40 Hz, and epoched from
200 ms pre-stimulus onset to 800 ms post-stimulus onset. In order to
clean the data, we automatically rejected all trials whose amplitude
exceeded a +/— 2000 femtotesla threshold; additional artefact rejec-
tion was performed through manual inspection of the data, removing
noisy trials that were contaminated with movement artefacts or extra-
neous noise. These clean epochs were averaged across conditions to
produce an evoked signal at each MEG sensor.

To reconstruct the location of MEG sensors relative to the individ-
uals' heads, the neuromagnetic data were co-registered with the
FreeSurfer average brain (CorTechs Labs Inc,, Lajolla, CA). This involved
scaling and orienting the average brain to the participant's head-shape.
The digitised scan was imported, the digital fiducial points were aligned
to the coil markers' position, and the average brain was expanded or re-
duced to fit the size of the digital scan. Next, an ico-4 source space was
created, consisting of 2562 vertices per hemisphere, each corresponding
to a potential electrical source. At each vertex, activity was computed for
the forward solution with the Boundary Element Model (BEM) method,
which provides an estimate of each MEG sensor's magnetic field. For
each subject, the inverse solution was computed from the forward solu-
tion and the grand average activity across all trials.

Two different orientation parameters were employed in the inverse
solution and applied to the data: 1) signed fixed orientation, which de-
fines the direction of the current normal to the cortex by projecting di-
poles perpendicular to the cortical surface and estimating activity from
the magnitude of the current dipole normal to the cortex; and 2)
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unsigned free orientation, which allows the fitted dipole at each poten-
tial electrical source to orient in any direction. Estimates are calculated
from the magnitude (absolute length) of the current dipole fitted at
the source. The inverse solution was applied to each condition average
employing an SNR value of 3, which produced a conversion into noise-
normalised Dynamic Statistical Parameter Map (dSPM) units (see Dale
et al., 2000).

Results

In order to localise the Type One and Type Two responses in our
data, we ran spatio-temporal permutation cluster tests over the time-
windows (80-130 ms, 130-180 ms) and regions (occipital and
temporal lobes) reported in Tarkiainen et al.'s (1999) results using the
Eelbrain module in Python (https://pythonhosted.org/eelbrain/). This
established the location of sources sensitive to the experimental
manipulation, and when these sensitivities arose. All cluster-based per-
mutation tests reported here followed the procedures detailed in Maris
and Oostenveld (2007).

In order to maximise statistical power and account for extraneous
variation, we coded conditions as binary variables within a regression
analysis. Combining regression with spatio-temporal permutation clus-
ter tests involved three stages (summarised in Fig. 2). First, the source
estimates of each trial within a selected region were used in turn as
the dependent measure of an ordinary least squares regression. The
data were in the form of N number of 3-dimensional matrices with
the shape: space (number of vertices in the tested ROI) x time (number

325

of milliseconds within the window interest) x item (number of trials).
The design matrix of this regression model included variables of interest
(e.g., noise level, string type and stimulus type), a random intercept, and
nuisance variables such as number of elapsed trials. This was applied to
each subject’s data separately, resulting in a beta coefficient for each
vertex in the source space, for each millisecond within the selected
time window, for each variable of interest, for each subject. Second, a
one-sample t-test was performed on the distribution of beta values
across subjects for each variable separately, again at each vertex and
time-point, in order to test if their value was significantly different
from zero. This resulted in a matrix of t-values, with a dimension for
each vertex and time-point. Third, all t-values exceeding a p < .05
threshold were clustered based on spatio-temporal adjacency. As only
t-values with the same polarity are clustered together, clusters of differ-
ent underlying polarity are identified as separate regions. If a cluster
consisted of a minimum of 10 vertices and lasted for at least 20 ms,
the t-values within this cluster were summed, resulting in a cluster-
level statistic, for comparison with test statistics of 10,000 random per-
mutations of the data. Each permutation involved shuffling predictor
values at random, and re-computing the cluster statistic of the permut-
ed data to form a distribution of cluster-level t-values. If the original crit-
ical test statistic fell at or below the 2.5th percentile, or beyond the
97.5th percentile of this distribution, the cluster was considered signif-
icant at a corrected level of p <.05. This p-value was then corrected for
multiple comparisons over time and space following Maris and
Oostenveld (2007). This procedure was followed identically for both
fixed and free source estimates.

cata input beta coeffcients variable values residual noise

Y Bn Xn N E
stage one:
regression s m .
model fit to flosew| = [EHESSE x 2 - il asPm

each subject 2
time time time
beta ceell cients 2010 Malrix tvalues

Bn HO t
stage two:
one sam Ie @ & ore sample ttest =§

t-tests opn dj botse | V8. | 4 oros A
coefficients
2 e tima
time ime
t-values
- compare critical t-value to distribution
f compute critical value
for the cluster
»
stage three: £ x
permutation ] wewes| 3 — & ‘,
cluster test £ J
time time

t-values from 10,800 permutatiors

Fig. 2. Stages of cluster test based on mixed effects regression. n = place holder for each variable of interest. Depiction illustrates computations for a single variable — the same procedure is

carried out to form clusters for each variable. HO = null hypothesis.
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Type One response: Distributed source analysis

Tarkiainen et al. (1999) localised the Type One response bilaterally
in the occipital lobe, with peak latency of dipole activity between 95
and 115 ms post stimulus onset. All stimulus items displayed a correla-
tion between activation and noise, whereby more noise elicited higher
amplitude of activity, and there was no fall-off in activation between
level 8 noise and level 24 noise. Activity also positively correlated with
stimulus length, whereby longer items elicited more activation.

To capture this response, we included Noise Level and Stimulus Type
as variables of interest. Noise Level was coded as follows: 1: 0, 8: 1, 16: 2,
24: 3; Stimulus Type was coded as follows: blank: 0, letter: 1, syllable: 2,
word: 3. A nuisance variable, the number of elapsed trials, was also in-
cluded to account for variance due to fatigue, but will not be reported
here. The regression analysis was run over the 50 ms time-window of
80-130 ms, and vertices were restricted to the occipital and temporal
lobes bilaterally (see Fig. 3A), merged into one region per hemisphere.
This region included the FreeSurfer aparc parcellation labels: lateral-
occipital, cuneus, lingual, pericalcarine, fusiform, middle-temporal and
inferior-temporal (available for download at http://surfer.nmr.mgh.
harvard.edu).

Analyses on both free and fixed estimates identified the Type One re-
sponse (see Table 3 and Supplementary figures S2 & S3). For Noise
Level, the signed fixed data yielded three significant clusters in each
hemisphere (p's <.05); for Stimulus Type, two left lateralised clusters
and three right lateralised clusters were identified (p's <.012). The
free unsigned estimates identified one significant cluster in each hemi-
sphere for Noise Level, both p <.01; one cluster was identified for Stim-
ulus Type in the left hemisphere (p <.014), while two non-significant
clusters were identified in the right hemisphere (p > .2). Note that
more clusters are found for signed estimates because sources with op-
posing polarity are not identified as adjacent neighbours and therefore
form separate clusters.

Type Two response: distributed source analysis
The Type Two response reported by Tarkiainen et al. (1999) was
characterised by a fall-off in activity at the highest noise level (24)

eliciting greater activity for the lower noise letter strings than the
strings with the highest level of noise. It was also reported that greater

B Type One “Noise” Effect
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Fig. 3. Summary of distributed source analysis using signed fixed estimates. (A) Location of spatial vertices used in the analysis. (B) Activation averaged over the most significant cluster of
the Type One “Noise” response. Brains presented in ventral (above) and medial (below) view. (C) Activation averaged over the most significant cluster of the Type Two “Noise” response.

Brain presented in ventral view. (D) Activation averaged over the most significant cluster of the Type Two “Symbol” response. Clusters on the brains represent t-values at each estimated
source, averaged over the shaded time window. Grey shadowing indicates the time during which the cluster was significant — cluster location illustrates position when averaged over this

significant time-window. LH = left hemisphere, RH = right hemisphere.
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activity was observed for letter strings over length-matched symbol
strings. The peak latency of the fitted dipoles was between 140 and
170 ms post stimulus onset, and was localised to the left-hemisphere
occipital-temporal junction.

Type Two sources were identified with two spatio-temporal cluster
tests. The first was run only on responses to letter strings (not symbol
strings or blank stimuli), and only on noise levels 8 and 24. This is be-
cause, unlike the Type One response, the Type Two response of
Tarkiainen was not characterised by a linear relationship between
noise level and amplitude. Rather, there was a drop-off in activation at
the highest noise level (24) when the letters became illegible. To cap-
ture this relationship we selected just the level of noise that was
found to elicit the largest response (8) and the smallest response (24).
The design matrix included Noise Level and Stimulus Type as predictors.
Noise Level was coded as follows: 24: 0, 8: 1; Stimulus Type was coded
as above. Note that the coding scheme for Type One Noise assumes
higher activity for noisier strings, whereas Type Two Noise assumes
higher activity for clearer strings — this should be noted when
interpreting the sign of reported t-values. We restricted time-points to
a 50 ms window between 130 and 180 ms, and vertices to the same
temporal-occipital region utilised in the Type One analysis. A summary
of these results is presented in Table 4; Noise Level responses are
presented in Fig. 6; String Type responses are displayed in Supplemen-
tary figures S2 & S3.

For the signed fixed data, three significant clusters were sensitive to
the Noise Level variable (8 > 24): p's <.05. Clusters formed for the Stim-
ulus Type variable were not significant (p's >.1). When testing unsigned
free data, no clusters were formed either for the Noise Level variable or
Stimulus Type.

The second cluster test was run just on responses to letter and sym-
bol strings at the lowest noise level. The design matrix included String
Type and Stimulus Type as predictors. String Type was coded as follows:
symbols: 0, letters: 1; Stimulus Type was coded as follows: one element:
0, two elements: 1, four elements: 2. Spatial and temporal restrictions
were the same as the first Type Two analysis above. For the signed
fixed data, one cluster survived corrections for multiple comparisons
both for the String Type variable p = .046 and the Stimulus Type vari-
able (p = .037). When using unsigned free source estimates, one signif-
icant cluster was formed for String Type (p = .014), and no clusters
were formed for Stimulus Type.

Type Two “Noise" Effect D Type Two “String” Effect
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Table 3

Summary statistics: results of the spatio-temporal regression analysis of the Type One Noise Level variable, for both fixed and free source estimates. Cluster size is measured in number of

vertices. The green highlighted row corresponds to the most significant “fixed” cluster.

Variable Data Cluster size Hemisphere Cluster start (ms)
77 Left 80
52 Left 80
20 Left 80
_ 20 Left 80
©
£ Fixed 76 Right 80
] 57 Right 80
Q
.2 48 Right 80
2 15 Right 80
23 Right 80
224 Left 80
Free
209 Right 80

Linking responses to M100, M130 and M170

The next aim was to directly link the responses found in source space
to the MEG response components M100, M130 and M170, which are
defined based on peaks in sensor data. Using the fixed orientation
signed data and results from the full dataset, we projected activation
in each cluster back into sensor space to determine which peak (and
therefore, component) it corresponded to. Note that this is only possible
for data created with fixed orientation, as polarity of the magnetic field
cannot be reconstructed using unsigned current estimates. The location
of the cluster was used to mask the grand average source estimate, set-
ting all vertices outside of the cluster to zero. The forward solution,
which is a matrix that characterises the mapping from source space to
sensor space, was then applied to the masked grand average, translating
current estimates at each source to femtotesla amplitude at each sensor.
Examining the sensor-level responses of each cluster allows us to direct-
ly infer to which component it corresponds. Fig. 4 illustrates the results
of the cluster projection for a single representative subject. For cluster
projection averaged over all subjects, see Supplementary figure S1.

From inspecting the grand average response, three peaks were iden-
tified, with a latency of 85 ms, 149 ms and 172 ms (marked with vertical
dashed lines in the top panel of Fig. 4B). These timings fall within the
range of what has previously been found for the peak latency of the
M100, M130 and M170, respectively (Solomyak and Marantz, 2009,

Table 4

Cluster stop (ms) Cluster t-statistic Corrected p-value

130 -2035.61 <.0001
130 -853.324 0.0185
130 -455.428 0.0504
130 386.917 0.0634
130 -1978.87 0.0001
130 1683.32 0.0019
130 -984.855 0.0133
130 363.749 0.0703
130 315.11 0.0902
130 3308.5 0.0003
1156 2569.49 0.0048

2010; Simon et al., 2012; Lewis et al., 2011; Fruchter and Marantz,
2015). Each of the three projected clusters was found to correspond to
one of these evoked peaks, consistent both in terms of the sensor topog-
raphy and the timing of increased sensor amplitude. These results
therefore link the Type One response to the M100 component, the
Type Two Noise Level response to the M130 component, and the
M170 response to the Type Two String Type component.

Functional localiser

Designing the abridged paradigm

We next ran an exploratory analysis to identify stimuli from the
Tarkiainen replication that would yield significant effects of the Type
Two response. These stimuli would be used in the abridged Tarkiainen
adaptation for the purpose of identifying an fROI for use in future stud-
ies. We found that using just the four-element (four letter words and
length-matched symbols) and one-element items (single letter and sin-
gle symbol), in the lowest and highest noise levels achieved this goal.
This resulted in a subset of 300 trials (50 trials x 6 conditions), which
would take a participant around 6 min to complete.

The posterior Type Two-Noise response was identified based on re-
sponses to the one and four element letter string items (recall that the
noise level for all symbol strings was 1). A regression analysis of Noise
Level created a beta value for each vertex and each millisecond from

Summary statistics: Results of the spatio-temporal regression analysis of the two Type Two variables, for both fixed and free source estimates. Cluster size is measured in number of ver-
tices. The green highlighted rows correspond to the most significant “fixed” clusters for each variable.

Variable Data Cluster size Hemisphere Cluster start (ms)
58 Left 130
3
'x 21 Left 130
©
= Fixed 16 Left 130
>
]
@ 19 Left 130
S 12 Left 130
Free
a 238 Left 130
2 Fixed
2 15 Left 140
‘=
& Free 124 Left 130

Cluster stop (ms) Cluster t-statistic Corrected p-value
180 -967.281 0.002
180 283.296 0.0384
175 267.156 0.0449
170 244938 0.0591
175 167.875 0.1485
No clusters
180 315.442 0.0463
180 -157.317 0.2101

180 1378.6 0.014
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Fig. 4. Projecting clusters identified in source-space back into sensor-space: data for one representative subject. (A) Sensor topographies averaged over 20 ms bins. Top panel: Average
response across all trials for all sensors. Lower three panels: Evoked responses across sensors that contributed to the significant cluster of each response. N = “Noise Level Response”,
S = “String Type Response”. (B) Butterfly plots for the grand average (top panel) and each projected cluster (lower three panels). Dashed vertical lines indicate peaks of the M100,
M130 and M170 respectively. (C) Topography at the sensor peak for each of the three responses, and their corresponding clusters in source space. All brains presented in ventral

position. LH = left hemisphere, RH = right hemisphere.

stimulus onset to 500 ms after onset. The same threshold-based spatio-
temporal cluster tests reported above were performed from 130 to
180 ms on the same temporal-occipital region analysed in the full para-
digm. This resulted in one significant cluster of 64 vertices in the lateral-
occipital lobe for the entirety of our time-window of interest (p <.001).
An identical regression was run over the same time-window and spatial
extent on the String Type variable, comparing low-noise letter strings to
low-noise symbol strings. This identified the anterior Type Two String
Type response: one significant cluster of 19 vertices in the inferior tem-
poral lobe from 145 to 180 ms (p <.001).

Results of localiser

To assess the suitability of the reduced stimulus set as a localiser of
early lexical processing, we ran the abridged Tarkiainen paradigm dur-
ing the same recording session as the replication of the S&M visual lex-
ical decision task. The S&M stimuli included nonwords and an equal
number of mono-morphemic and bi-morphemic words falling along
continua of linguistic variables tested in the original S&M study, includ-
ing transition probability from stem to suffix, and orthographic and
morphological affix frequency. Also included were bigram frequency
and lemma frequency, which were found to be significant determiners
of M130 and M170 activity in later studies (Lewis et al., 2011; Simon
et al,, 2012). We later tested the modulation of activity in localised re-
gions as a function of these continuous lexical variables.

Data analysis procedures were identical to those used with the full
dataset: Type Two sources were identified by running regression-
based spatio-temporal cluster tests on a 130-180 ms time-window in
the temporal-occipital region. Tests on fixed signed data revealed clus-
ters located very close to, and with the same current polarity as, those
found in the full dataset: an effect of Noise (p = .01), and of String
Type 200-250 ms (p = .009). Unsigned free data did not identify any
clusters where responses to noise level 8 were greater than noise level
24, and no clusters were formed for String Type. Only Type One clusters
were identified with free unsigned estimates.

Using signed fixed estimates, the next step was to extract regions
found to be sensitive to the Tarkiainen localiser experiment, and to
test the same regions' sensitivity to lexical variables in the lexical deci-
sion task. Note that the localiser experiment contained an orthogonal
set of stimuli, which insured that the technique was statistically sound
and not “double dipping”. To do this, we ran temporal cluster tests on
the S&M data from 80 to 180 ms (chosen to encompass potential
M130 and M170 effects) in each Tarkiainen-identified region, assessing
the significance of the five continuous variables. The regression included

all items with meaningful values on a given variable (i.e., not listed as
“NA” in Table 2).

Activity in the posterior Noise Level region significantly correlated
with orthographic affix frequency (p = 0.008) from 80 to 100 ms; mor-
phological affix frequency (p = 0.03) from 80 to 100 ms and log trans-
form of mean bigram frequency (p = 0.01) from 100 to 130 ms. No
clusters surpassed the threshold for either of the other two variables.
The anterior String Type region correlated with lemma frequency
from 135 to 170 ms (p = .001) and log transition probability from
130 to 170 ms (p = .008). No other variables surpassed the cluster-
forming threshold.

As functional localisers are usually applied at the subject rather than
group level, it was also attempted to apply the localiser within each sub-
ject. Because the implementation of regression-based spatio-temporal
permutation cluster tests requires a distribution of beta values over sub-
jects (“Stage Two” illustrated in Fig. 2), we first tried localising within-
subject responses with t-tests, which can be performed at the level of
a single subject. High and low noise was compared for the Type Two-
Noise response, and letter and symbol strings for the Type Two-
Symbol response. However, this method yielded no clusters for any of
the individual subjects.

As a second implementation, within-subject responses were local-
ised by clustering beta values obtained from “Stage One” of the mixed
effects regression procedure. To do this, we applied the full regression
design matrix to the within-subject data, to create a map of beta values
over the cortical surface. These beta coefficients were transformed into
t-values. Clusters were formed if at least ten spatio-temporally adjacent
samples surpassed a +2 threshold for the Type Two String Type
response, or —2 threshold for the Type Two Noise Level response,
(directionality was based on the polarity observed in the full data
analysis). Vertices within the cluster with the highest average t-value
were extracted and considered that subject’s localised sensitivity. A
temporal cluster test was then run at the group level over the averaged
values within these localised vertices (time windows and variables
identical to those described above), to determine if these sources were
significantly modulated by the lexical variables in the S&M replication.
The variable that correlated most significantly with localised activity
was log transition probability (p = .06) between 160 and 175 ms;
however, this method was clearly less sensitive than applying the
localiser at the group level. It therefore appears that there is insufficient
signal in the abridged paradigm to apply it as a localiser within a single
subject.

Finally, we wanted to test whether running the abridged paradigm
was more beneficial than simply extracting the cluster location from
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the full dataset. When running a temporal regression test on the S&M
data (as detailed above), but averaging activity over the two Type Two
clusters found in the full dataset rather than the localiser, no clusters
were formed for the lexical variables of interest. This suggests that ap-
plying a localiser at the group level aids the identification of functionally
specialised regions.

Discussion

The primary goal of the present study was to compare the relative
localisation and timing of the letter-specific Type Two response
(Tarkiainen et al., 1999) with other established MEG responses
(e.g., M130, M170). We achieved this by conducting a replication
study of Tarkiainen et al.'s original MEG experiment, combining distrib-
uted source analysis, spatio-temporal cluster tests and the projection of
responses back into sensor space. The second goal was to assess the
functionality of these responses. For this purpose, we designed an
abridged version of the Tarkiainen experiment that may be used to lo-
calise letter-specific responses in future studies. We assessed sensitivity
of these fROIs by testing the influence of continuous variables from the
S&M replication on neural activation of the fROIs; in doing so, we further
linked the fROIs’ sensitivity to other reported components in the litera-
ture. Our final goal was to spell out differences between cortically
constrained source estimates and unconstrained methods of MEG
source reconstruction and to characterise the Type Two responses in
terms of current polarity.

Type One

The Type One response was localised bi-laterally in the occipital lobe
between 80 and 130 ms post stimulus onset, beginning in V1/BA 17 and
extending up to V3/BA 19. This response encapsulates the primary visu-
al evoked response at around 100 ms, eliciting the field pattern over
sensors typically associated with the M100. Consistent with Tarkiainen
et al., signal amplitude of the Type One response increased systematical-
ly as a function of noise (greater Gaussian noise correlated with greater
amplitude of activity), and increasing stimulus length, suggesting that
the neural populations underlying this response are sensitive to the vi-
sual complexity of a given stimulus.
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Type Two

The sensitivity to both String Type (Symbol Strings vs. Letter Strings)
and Noise level (8 > 24) were originally reported by Tarkiainen et al. to
originate at the same place and time. However, we found two main ef-
fects for the Type Two response, each localising to different patches of
cortex at different time-points, realising opposing polarity of the current
with fixed orientation (see Fig. 3). The main effect of Noise (8 > 24)
(henceforth the “Type Two-Noise” response) was found at the junction
between the occipital cortex and temporal lobe, as was the original loca-
tion reported by Tarkiainen et al. The main effect of String Type (hence-
forth “Type Two-Letter” response), however, was localised at the
anterior-most portion of the fusiform gyrus, more anterior than the
Type Two-Noise response. The posterior Noise response had negative
polarity, whereas the anterior Letter response had positive polarity.

When projecting the two Type Two clusters back into sensor space
(Fig. 4), the observed switch in cluster polarity was also present at the
sensor level (i.e., the magnetic field over sensors shifted direction). Fur-
thermore, each response was found to have a distinct spatial and tem-
poral profile that corresponded to peak responses of the grand
average, and was distinct from the other projected clusters. The Type
One response corresponded to the M100 peak; the Type Two-Noise re-
sponse corresponded to the M130 peak, and the Type Two-Letter re-
sponse corresponded to the M170 peak. Interestingly then, our results
do not support the previous links that have been made between the
M130 and the earlier Type One response (Lewis et al., 2011). Instead,
they suggest that the Type One response is driven by much lower-
level properties of the stimulus. Further, they suggest that the Type
Two response as identified by Tarkiainen et al. should be analysed as
two functionally distinct components.

Functional ROI

Functionally localised ROIs have a number of advantages over ana-
tomically defined parcellations or ROIs based on peaks in grand-
average sensor or source data. In particular, fROIs are not constrained
by borders between regions, and do not require analysing larger regions
than necessary - a complication when correcting for multiple compari-
sons in cluster-based analyses. Provided that the localiser and critical
experiment tap into the same neural sensitivities, a fROI should yield
the least variation between the location of the effect and the region

Predictor: Log Transition Probability
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Fig. 5. Beta values of the regression analysis between (A) the posterior localiser and log orthographic affix frequency and mean bigram frequency; (B) the anterior localiser and log
transition probability and log lemma frequency. Beta coefficients are averaged over the spatial extent of the cluster. Grey shading indicates when the beta values were significantly

different from zero.
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being tested, thus providing the greatest level of statistical power. Func-
tional ROIs also remove the experimenter's role in selecting a region
based on visual inspection of the data, and do not employ arbitrary pa-
rameters to localise regions. Further, fROIs are particularly pertinent for
cortically constrained source estimates: as the localiser is based on a
threshold-based cluster analysis, it identifies a region of homogenous
polarity, and thus fully overcomes the issue of activity cancellation -
the principal motivation against using signed source estimates with
MEG data.

In testing just a subset of the experimental materials from
Tarkiainen et al. (1999), we found a very robust effect for both Type
Two-Noise and -Letter responses when using just the four-element
block (four letter words, noise levels 1 and 24 and length-matched sym-
bols), and one-element block (one letter, noise levels 1 and 24 and one
symbol) which took participants only ~6 min to complete. The location
and timing of each Type Two response corresponded with the full
dataset, supporting that the same neural sensitivities can be localised
even when using one quarter of the stimulus materials. This set is there-
fore an ideal candidate for a localiser paradigm.

Tests of the posterior Type Two-Noise response revealed significant
modulation of activity by orthographic and morphological affix fre-
quency between 80 and 100 ms, and log mean bigram frequency be-
tween 100 and 130 ms. Numerous studies have associated both of
these variables with the M130 component (Lewis et al., 2011; Simon
et al., 2012; Solomyak and Marantz, 2009, 2010), suggesting that the
posterior localiser identified spatio-temporal regions associated with
lower-level orthographic processing.

Analysis of the more anterior Type Two-Letter response showed that
log lemma frequency and log transition probability significantly modu-
lated activity from 130 to 170 ms (morphological affix frequency was
not a significant determiner). Both of these variables have previously
been associated with the M170 response (Lewis et al., 2011; Simon
et al,, 2012), suggesting that regions supporting the anterior Type
Two-Letter response are shared with the M170, which is responsible
for more abstract lexical processing. Regression coefficients of the con-
tinuous variables are presented in Fig. 5.

This functional disassociation between posterior and anterior re-
sponses corresponds to recent results employing cortically constrained
MEG data from a lexical decision task (Chen et al., 2015). The authors
found that activity in posterior portions of the fusiform correlated
with bigram frequency ~ 100 ms post onset, while anterior regions cor-
related with word surface frequency ~ 160 ms, thus strongly corroborat-
ing the present Results. Lewis et al. (2011) also reported similar results
using unconstrained signed estimates of MEG data, finding that only
posterior portions of the anterior M170 ROI displayed surface frequency
effects. This was interpreted as indexing a “high-ngram” effect, and the
activation of more concrete representations.

Our findings therefore support that the abridged Tarkiainen para-
digm can be used to successfully localise early posterior orthographic
processing, as well as later anterior sub-lexical processing. More specif-
ically, finding activity in these regions to significantly correlate with var-
iables shown to modulate the M130 and M170 is strong functional
evidence that the Type Two-Noise and -Letter responses are analogous
to those MEG components, in line with the clusters' peaks in the sensor
data reported above.

The stimuli used in the localiser of the present study are available to
download, either on github (https://github.com/LauraGwilliams/
TarkiainenLocaliser.git) or by contacting the first author.

Graded lexical sensitivity of Type Two

Each linguistic variable included in the localiser analysis is associated
with a certain level of processing complexity and has been linked to a
specific response component in previous literature. Orthographic affix
frequency and bigram frequency are linked to surface orthographic
properties entailing relatively low-level processing and access to con-
crete representations. Both variables modulated activity in the Type

Two-Noise region, which is in line with the LCD model prediction that
posterior cortical regions subserve lower level processes. The posterior
sensitivities of this region are consistent with the “letter-form” area
(Thesen et al., 2012) and the M130 component (Solomyak and
Marantz, 2010), suggesting that the responses and the localiser share
underlying neural mechanisms.

Variables such as lemma frequency and transition probability are
linked to more abstract processing involving the connection between
input and stored word forms. The LCD model accordingly positions
neurons tuned to higher-level processes along anterior portions of the
fusiform gyrus, in agreement with our results. The sensitivity of the
Type Two-Letter response to these variables, in addition to its anterior
location, are consistent with equating the Type Two-Letter response
with the M170 as identified by S&M, with the VWFA (Cohen et al.,
2000) and with the “word-form” areas (Thesen et al., 2012) that appear
to involve higher-level processing.

The posterior-to-anterior progression of abstract processing is thus
supported by our results, whereby lower-level sensitivities such as
that to letter frequency arise posteriorly, and higher order variables
such as lemma frequency appear to be encoded more anteriorly. Our re-
sults are in full corroboration with the LCD model as tested by Vinckier
et al. (2007), and offer striking similarities in localisation and function-
ality between the two Type Two responses and the “letter-form” and
“word-form” regions identified by Thesen et al. (2012). Together our
findings support the hypothesis that words are first processed through
the orthographic properties of letter strings, followed by the processing
of word forms and sub-lexical structure.
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Fig. 6. Timecourse of activation averaged over the Type Two-Noise cluster found in the full
dataset (shown in Fig. 3C), for three methods of source estimation. Values 1, 8, 16 and 24
correspond to noise level of the stimulus.
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Comparing source estimate constraints

The final issue to discuss is the implication of applying different
methods of source reconstruction. We directly assessed whether, in
comparison to signed source estimates, conventional unsigned source
estimates of MEG data would reduce the ability to discriminate between
spatio-temporally neighbouring responses or “lose” evoked peaks by
taking absolute strength of activation.

The present study consistently found unsigned free orientation to be
less sensitive to experimental manipulations than signed fixed esti-
mates. For the full Tarkiainen dataset, analyses on free unsigned data
did not form any clusters above the p < .05 threshold for the Type
Two-Noise response, and for the abridged paradigm, free unsigned
data failed to uncover both the Type Two-Noise response and the
Type Two-Letter response. Analyses using fixed signed data straightfor-
wardly identified all of these responses, even in the absence of structur-
al MRIs for participants - the presence of which should only serve to
improve accuracy further.

Fig. 6 presents the source estimates of the Type Two-Noise response
when reconstructing the source of activity using three methods:
1) signed data fixed normal to the cortical surface, whereby negative ac-
tivity corresponds to current flowing into the cortical mass, and positive
to current flowing out of the cortical mass; 2) unsigned fixed data, tak-
ing the norm of the dipole fitted perpendicular to each vertex; and 3)
unsigned free data, which does not retain the direction of the source
and allows the dipole to freely orient in any direction. Recall that free

90 ms 6
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unsigned data did not elicit a reliable Type Two-Noise response in the
full dataset. All sources are from the same spatial cluster identified
with the signed fixed estimates, shown in Fig. 3C.

As can be seen in Fig. 6, the separation between peaks of activity is
much less clear for the unsigned estimates, as compared to the signed
methodology. Because there is temporal overlap between one response
and the next in this region, and because the two responses have oppos-
ing polarity, averaging these values distorts the actual relationship be-
tween activation and the given experimental conditions. This
erroneous averaging across polarity is therefore likely to explain why
Type Two-Noise responses were not identified using unsigned esti-
mates. For the timecourse of activation found for the Type One response
and Type Two String Type response with both free unsigned and fixed
signed estimates, refer to Supplementary materials (Figures S2 & S2).

In the study conducted by Fruchter and Marantz (2015, Appendix B),
the authors analysed their data employing the two methods of source
reconstruction discussed above. They found that when comparing
source estimation methods, unsigned data greatly reduced activation
peaks. This dampening of evoked responses can also be observed
when comparing the unsigned MEG and signed ECoG measurements
in Thesen et al.'s (2012) study. Figs. 4h and i from their paper represent
the local field potential recorded from the cortical surface directly, and
the MEG source reconstruction from the same region. There we can
see very clear polarity shifts in the ECoG data, allowing for discrimina-
tion between response components in this dataset; however, in the un-
signed free orientation MEG data, it is unclear whether the “bumps” of
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Fig. 7. Polarity of magnetic field at a single sensor (above) and across all sensors (below) averaged over subjects and items. Topographic plots show the polarity of the magnetic field at each

of the three peaks in the sensor data.
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activity reflect separate responses. One level of discrimination is there-
fore lost when removing this polarity information, as compared to the
method that records the electric potentials generating the MEG signal.

Such shifts in polarity are not negligible and are clearly observed at
the sensor level: A single channel will shift between a positive and neg-
ative magnetic field depending upon the orientation of the dipole at the
source. Fig. 7 below illustrates the strength of the magnetic field at a left
lateralised sensor averaged across all subjects and items. In line with the
timing we observed for the source analysis of the Type Two responses, a
field reversal is also apparent, indicating that the current dipole(s) in
that region flip direction at different time-points.

This field reversal was also observable when projecting the activity
of clusters into sensor space for a single subject. The direction of the di-
pole for the Type Two responses was clearly oriented differently
(Fig. 4C), corresponding to the polarity differences also observed at
the source level. Even without structural MRIs for individual subjects,
the polarity of the clusters found with fixed orientation lined up with
the sensor data, such that the field pattern over sensors corresponded
to polarity of sources. This is consistent with the polarity difference be-
tween the M130 and M170 when using a free signed methodology
(assigning polarity based on whether the dipole is oriented up or
down with respect to the head) observed in the original Solomyak
and Marantz (2010) analysis and in follow-up studies (Lewis et al.,
2011; Simon et al.,, 2012).

This is only a limited investigation into the question of current re-
construction. Further study should aim to ascertain whether all negative
response components reflect functionally different computations from
all positive components, or if the directionality of the current is an arbi-
trary dimension of discrimination (similar to polarity in EEG). The pres-
ent study illustrates that polarity of the reconstructed sources is an
important element of MEG data, and can be used to disassociate func-
tionally discrete (in this case, Type Two) neighbouring responses. Fur-
thermore, using signed estimates appears to be more experimentally
robust when analysing a reduced dataset, as well as a more sensitive
method, especially when current dipoles rapidly switch direction. Find-
ing evidence, both at the sensor and source level, that the neural gener-
ators underlying the identified responses are alternating in polarity
highlights the importance of current dipole directionality for MEG data.

Summary

Using distributed source analysis of MEG data, we localised the Type
Two response of Tarkiainen et al.'s (1999) study for comparison with
other established response components and regions of lexical-specific
activity. The Type Two response localised to two different regions
with different preferences: 1) preference for visible over obscured letter
strings in the lateral-occipital lobe with negative activity with respect to
the cortical surface; 2) preference for letter over symbol strings in the
anterior fusiform gyrus with positive activity. When testing the lexical
sensitivities of these regions as part of an abridged paradigm, functional
responses were shared between the posterior Type Two-Noise re-
sponse, the M130 and “letter-form” area, and between the Type Two-
Letter response, the M170 and “word-form” area. These results suggest
that each case evokes the same underlying processes, and crucially that
a subset of the stimuli materials is sufficient to localise these response
components with notable accuracy.

In order to address the issue of source reconstruction with MEG data,
we applied two methods to the current dataset and compared the re-
sults to the findings of Tarkiainen et al. (1999). In the presence of rapidly
alternating polarity, utilising cortically constrained estimates was the
most sensitive approach, ensuring the preservation of evoked response
components. By contrast, cortically unconstrained unsigned estimates
were susceptible to the loss of discrimination between activation
peaks. In this regard, our findings directly indicate that, arbitrary or
not, retaining the sign of MEG data can allow for greater sensitivity to
experimental manipulations and an additional level of discrimination.

Bringing our results together, we are able to characterise two
localisers of letter-sensitive responses for future studies in time, space
and current directionality with respect to the cortical surface. We pro-
pose that the posterior Type Two sensitivity to visible letter strings
can be used to localise orthographic processing, and the anterior Type
Two sensitivity to letter strings over symbol strings can localise
higher-level processing of sub-lexical structure, such as morphological
composition. Our results promote the use of cortically constrained
signed estimates of MEG data, in unison with functional ROIs when in-
vestigating letter-specific neurophysiological responses in future
studies.
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