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Speech is an inherently noisy and ambiguous signal. To fluently derive meaning, a listener must integrate contextual information to guide
interpretations of the sensory input. Although many studies have demonstrated the influence of prior context on speech perception, the neural
mechanismssupportingtheintegrationofsubsequentcontextremainunknown.UsingMEGtorecordfromhumanauditorycortex,weanalyzed
responses to spoken words with a varyingly ambiguous onset phoneme, the identity of which is later disambiguated at the lexical uniqueness
point. Fifty participants (both male and female) were recruited across two MEG experiments. Our findings suggest that primary auditory cortex
is sensitive to phonological ambiguity very early during processing at just 50 ms after onset. Subphonemic detail is preserved in auditory cortex
over long timescales and re-evoked at subsequent phoneme positions. Commitments to phonological categories occur in parallel, resolving on
the shorter timescale of �450 ms. These findings provide evidence that future input determines the perception of earlier speech sounds by
maintaining sensory features until they can be integrated with top-down lexical information.
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Introduction
Typically, sensory input is consistent with more than one percep-
tual inference and surrounding context is required to disambig-
uate. When this ambiguity occurs in a signal that unfolds
gradually, the system is presented with a critical trade-off: either
prioritize accuracy by accumulating sensory evidence over time
or prioritize speed by forming interpretations based on partial
information. This trade-off is particularly prevalent in speech,
which is rife with noise and ambiguity. Further, because language
is hierarchically structured, inference occurs both within and

across levels of linguistic description: Comprehension of pho-
nemes (e.g., /p/, /b/) is required to understand words; under-
standing words aids comprehension of their constituent
phonemes. How does the human brain strike a balance between
speed and accuracy across these different levels of representation?

When the input is an unambiguous phoneme, low-level spec-
trotemporal properties are first processed in primary auditory cor-
tex �50 ms after onset [A1/Heschl’s gyrus (HG)]. Then, higher-level
phonetic features are processed in superior temporal gyrus (STG)
for �100 ms (Simos et al., 1998; Ackermann et al., 1999; Obleser
et al., 2003; Papanicolaou et al., 2003; Obleser et al., 2004;
Chang et al., 2010; Mesgarani et al., 2014; Di Liberto et al.,
2015). These are thought to be purely bottom-up computations
performed on the acoustic signal. In natural language, where the
acoustic signal is often consistent with more than one phoneme,
the system will need to decide which categorization is the correct
one. It is currently unknown where the recognition and resolu-
tion of phoneme ambiguity fits relative to this sequence of
bottom-up operations.

To cope with phoneme ambiguity in speech, the brain uses
neighboring information to disambiguate toward the contextu-
ally appropriate interpretation. Most prior research has focused
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Significance Statement

The perception of a speech sound is determined by its surrounding context in the form of words, sentences, and other speech
sounds. Often, such contextual information becomes available later than the sensory input. The present study is the first to unveil
how the brain uses this subsequent information to aid speech comprehension. Concretely, we found that the auditory system
actively maintains the acoustic signal in auditory cortex while concurrently making guesses about the identity of the words being
said. Such a processing strategy allows the content of the message to be accessed quickly while also permitting reanalysis of the
acoustic signal to minimize parsing mistakes.
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on the use of preceding context, both in terms of the underlying
computations and its neural implementation. This work suggests
that previous context sets up probabilistic expectations about
upcoming information and biases acoustic perception to be con-
sistent with the predicted phonemes (Warren, 1970; Cole, 1973;
Samuel, 1981). The left STG and HG appear to be involved in this
process and activity in both regions correlates with the extent to
which an expectation is violated (Gagnepain et al., 2012; Ettinger
et al., 2014; Gwilliams and Marantz, 2015).

Here, we focus on much lesser explored postdictive processes,
which allow subsequent context to bias perception. This phe-
nomenon has been demonstrated behaviorally (Ganong, 1980;
Connine et al., 1991; McQueen, 1991; Samuel, 1991; Gordon et
al., 1993; McMurray et al., 2009; Szostak and Pitt, 2013) and has
been explained in terms of commitment delay. The system waits
to accumulate lexical evidence before settling on an interpreta-
tion of a phoneme and maintains subphonemic information un-
til the commitment is made. Precisely how the brain implements
subphonemic maintenance and commitment processes is cur-
rently unestablished, but previous research has indicated some
regions that are likely to be involved. Activity linked to lexical
processing in supramarginal gyrus affects phonetic processing in
STG at a word’s point of disambiguation (POD) (Gow et al.,
2008). The STG and HG have also been implicated in fMRI stud-
ies of phoneme ambiguity (Blumstein et al., 2005; Myers and
Blumstein, 2008; Kilian-Hütten et al., 2011), in perceptual resto-
ration of masked phonemes (Leonard et al., 2016), and with sen-
sitivity to post-assimilation context (Gow and Segawa, 2009).

In this study, we investigate how phoneme perception is in-
fluenced by subsequent context by addressing three questions.
First, is the system sensitive to phoneme ambiguity during early
perceptual processes or during higher-order postperceptual pro-
cesses? Second, how is subphonemic maintenance and phono-
logical commitment neurally instantiated? Third, what temporal
constraints are placed on the system—what is the limit on how
late subsequent context can be received and still be optimally
integrated?

To address these questions, we recorded whole-head MEG in
two experiments. Participants heard phonemes that varied in
ambiguity either at the onset of syllables (Experiment 1) or at the
onset of words (Experiment 2). This allowed us to address our
first aim. In the second experiment, we tested for sensitivity to the
ambiguity, acoustics, and two phonetic features of the onset
sound (voice onset-time and place of articulation) at each pho-
neme along the length of the words to test for subphonemic
maintenance (question two). The onset phoneme was later dis-
ambiguated once the listener could uniquely identify what word
was being said. The latency of this “disambiguation point” ranged
from �150 to 700 ms, allowing us to address our third research
question.

Materials and Methods
In the first experiment, participants listened to syllables that varied along
an 11-step continuum from one phoneme category to another (e.g., /pa/7
/ba/). Participants classified the sounds as one of the two phoneme categories
(e.g., P or B). The syllables provide sensory information about onset pho-
neme identity but no subsequent context. This protocol is fully described in
“Experiment 1.”

In the second experiment, a different group of participants listened to
items from word7non-word continua (“parakeet”7 “barakeet”). This
second set of stimuli thus provides both sensory evidence about the
identity of the onset phoneme and subsequent contextual information.
The subsequent information becomes available at the word’s POD,
which refers to the phoneme that uniquely identifies the word being said

and therefore disambiguates the identity of the phoneme at onset. For
example, in the word “parakeet,” the POD is the final vowel “ee,” because
at that point no other English lexeme matches the sequence of phonemes.
Therefore, at the POD there is sufficient information in the speech signal
to uniquely identify the onset phoneme as /p/. The design of Experiment
2 was inspired by McMurray et al. (2009).

The first syllables of the words used in Experiment 2 were exactly the
same as those used in Experiment 1; the only difference is that the syllable
was followed by silence in the first experiment and the rest of the word in
the second experiment. This allowed us to examine neural responses to
the same acoustic signal in isolation and in lexical contexts.

Material creation (common to both experiments)
Word pairs were constructed using the English Lexicon Project (ELP)
(Balota et al., 2007), which is a database of phonologically transcribed
words and their properties. First, phonological transcriptions of all
words beginning with the plosive stops p, b, t, d, k, and g were extracted.
We selected this set of phonemes because it allowed us to examine re-
sponses as a function of two phonetic features. Voice onset time (VOT)
refers to the amount of time between the release of the stop consonant
and the onset of vocal cord vibration. If the amount of time is longer
(��40 ms), then the sound will be perceived as voiceless (e.g., t, p, or k);
if the time is shorter (��40 ms), then it will be perceived as voiced (e.g.,
d, b, or g). Place of articulation (PoA) refers to where in the mouth the
tongue, teeth, and lips are positioned to produce a speech sound. Differ-
ences in PoA manifest as spectral differences in the acoustic signal. By
measuring responses as a function of both VOT and PoA, we can exam-
ine how ambiguity is resolved when it arises from a temporal cue or from
a spectral cue, respectively.

Potential word pairs were identified by grouping items that differed by
just one phonetic feature in their onset phoneme. For example, the fea-
ture VOT was tested by grouping words with the onset phoneme pairs
(t-d, p-b, k-g) and PoA was tested with the onset phoneme pairs ( p-t, t-k).
Word pairs were selected when they shared two to seven phonemes after
word onset until the phonological sequence diverged. For example, the
word pair parakeet/barricade was selected because it differs in voicing of
the onset phoneme ( p/b), shares the following four phonemes (a-r-a-k)
and then diverges at the final vowel. This procedure yielded 53 word
pairs: 31 differed in VOT and 22 differed in PoA. Words ranged in length
from 4 to 10 phonemes (M � 6.8; SD � 1.33) and 291–780 ms (M � 528;
SD � 97). Latency of disambiguation ranged from 3 to 8 phonemes (M �
5.1; SD � 0.97) and 142–708 ms (M � 351; SD � 92).

A native English speaker was recorded saying the selected 106 words in
isolation. The speaker was male, aged 25, with a northeast American
accent. He said each of the words in a triplet with consistent intonation
(e.g., 1parakeet, — parakeet, 2parakeet). The middle token was ex-
tracted from the triplet, which promoted similar and consistent intona-
tion and pitch across words. We have used a similar strategy in previous
studies (Gwilliams and Marantz, 2015; Gwilliams et al., 2015). This ex-
traction was done using Praat software (Boersma and Weenink, 2000).

Each item pair was exported into TANDEM-STRAIGHT for the mor-
phing procedure (Kawahara et al., 2008; Kawahara and Morise, 2011). In
short, the morphing works by taking the following steps: (1) position
anchor points to mark the onset of each phoneme of the word pair,
(2) place weights on each anchor point to determine the percentage contri-
bution of each word at each phoneme, and (3) specify the number of con-
tinuum steps to generate. An explanation and tutorial of the software is
available at: https://memcauliffe.com/straight_workshop/index.html.

For example, to generate the “barricade”7 “parricade”, “barakeet”7
“parakeet” continua shown in Figure 1, anchor points are first placed at
the onset of each phoneme in the recorded words “barricade” and “par-
akeet,” marking the temporal correspondence between the phonemes in
the word pair. Next, we decide the amount of morphing to be used at
each phoneme to generate the unambiguous words/non-words at the
end points of the continua. At the first phoneme, the anchor points are
weighted as either 100% “barricade” to generate an unambiguous /b/ at
onset, or 100% “parakeet” to generate an unambiguous /p/ at onset. All
subsequent phonemes until point of disambiguation (“-arak-”) are
weighted with equal contributions of each word (50 –50). At and after
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Figure 1. Stimuli examples. a, An example 11-step voice onset time syllable continuum used in Experiment 1. b, An example 11-step place of articulation syllable continuum used in Experiment
1. c, An example five-step perceptually defined continuum pair used in Experiment 2 generated from the words “barricade” and “parakeet” (shown in green). The resultant non-words “parricade”
and “barakeet” are shown in red. The point of disambiguation is represented with a dashed line.
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disambiguation, anchors are again weighted at 100% either toward
“parakeet” for the “parakeet– barakeet” continuum, or toward “barri-
cade” for the “parricade– barricade” continuum.

In general, for each pair, all anchor points before the POD are placed at
the 50% position and the first anchor point is positioned either in the
congruent position, creating a word (“parakeet”) or the incongruent
(competitor) position, creating a non-word (“barakeet”). This ensures
that apart from the first phoneme, the acoustic signal remains identical
across the two word pairs until the disambiguation point. Eleven conti-
nua steps were created for each continuum.

The resulting 1166 auditory files were analyzed using the Penn Forced
Aligner (p2fa) (Yuan and Liberman, 2008) to extract the timing of each
phoneme’s onset and offset along the length of the word. This created a
set of annotation files, which were then visually inspected using Praat
(Boersma and Weenink, 2000). The accuracy of the p2fa aligner was good
overall, but a few manual adjustments were made on �10% of the audi-
tory files to ensure correct timing.

Experiment 1
Participants. Twenty-four right handed native English participants took
part in the study (11 female; age: M � 25.44, SD � 8.44). This sample size
was selected based on previous studies using the same MEG machine
(Gwilliams and Marantz, 2015; Gwilliams et al., 2016; Gwilliams and
Marantz, 2018). They were recruited from the New York University Abu
Dhabi community and were compensated for their time. All had normal
or corrected vision, normal hearing, and no history of neurological
disorders.

Stimuli. From the word7 nonword continua described in “Material
creation (common to both experiments),” we extracted just the first
syllable (consonant–vowel sequence). This was done for each of the 1166
items. We then amplitude-normed the extracted files to 70 dB.

Experimental design. The syllable stimuli were separated into 11 blocks.
Each block consisted of two items from each continuum, with the con-
straint that each item had to be at least three morphed steps away from its
paired counterpart. This resulted in a total of 106 trials per block and
1166 trials total. The assignment of stimulus to block was different for
each of the 24 participants and was balanced using a Latin-square design.
Item order was randomized within each block.

Participants heard each syllable in turn, and had to categorize the
sound as one of two options that were displayed on the screen. While
participants completed the categorization task, whole-head MEG was
being recorded. The screen was �85 cm away from the participant’s face
while they lay in a supine position.

The experimental protocol was as follows. First, a fixation cross was
presented for 1000 ms. Then, the two options appeared in upper case,
flanking the fixation (e.g., “B � P”). The syllable was played 500 ms later
and the participant needed to indicate which of the two options best
matched the syllable they heard by responding with a button box. The
options remained onscreen until a response was made. There was no
limit placed on how soon participants needed to respond. At each block
interval, participants had a self-terminated break. The background was
always gray (RGB: 150, 150, 150). All text was in white (RGB: 0, 0, 0), size
70 Courier font. The experiment was run using Presentation software
(Version 18.0; Neurobehavioral Systems, www.neurobs.com). The re-
cording session lasted �50 min.

Experiment 2
Participants. Twenty-five right-handed native English participants took
part in the study (15 female; age: M � 24.84, SD � 7.3). Six had taken
part in Experiment 1 two months earlier. All had normal or corrected
vision, normal hearing, no history of neurological disorders, and were
recruited from the New York University Abu Dhabi (NYUAD)
community.

Stimuli. In the second study, we used items from the full word 7
nonword continua. For these items, we wanted to make the onset pho-
nemes across the words differ along a perceptually defined continuum
rather than the 11-step acoustically defined continuum used in Experi-
ment 1. In other words, in absence of lexical context, we wanted to make
sure the phoneme would be picked out of the pair a 0.05, 0.25, 0.5, 0.75,

and 0.95 proportion of the time. To set up the materials in this way, we
averaged the psychometric functions over subjects for each 11-step con-
tinuum used in Experiment 1 and selected the five steps on the contin-
uum that were closest to the desired selection proportions (Fig. 2). This
converted the continuum from being defined along 11 acoustically de-
fined steps to being defined along five perceptually defined steps. Conti-
nua were removed if the unambiguous endpoints of the continuum were
not categorized with at least 80% accuracy for all subjects or if the posi-
tion of the ambiguous token was not at least three points away from
either endpoint of the continuum. This resulted in 49 remaining word
pairs and 490 trials total. These words were amplitude normed to 70 dB.

Experimental design. Participants performed an auditory-to-visual
word-matching task on two of five auditory items. They were not re-
quired to explicitly make judgements about the identity of the onset
phoneme. The visual word was either the same as the auditory word (e.g.,
parakeet–parakeet would require a “match” response) or it was the other
word of the pair (e.g., parakeet– barricade would require a “mismatch”
response). One item of each 5-step continuum was made into a “match”

Figure 2. Behavioral results for Experiment 1. Top, Behavioral psychometric function of
phoneme selection as a function of the 11-step acoustic continuum. PoA and VOT continua are
plotted separately. The colored horizontal lines correspond to the five behavioral classification
positions used to define the perceptual continuum used in Experiment 2. Bottom, Reaction
times as a function of the 11-step continuum. Note the slow down for ambiguous tokens and
slower responses to items on the VOT continuum compared with the PoA continuum.
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trial (1/5) and one other was a “mismatch” trial (1/5). These conditions
were pseudorandomly assigned using a Latin-square procedure. The ex-
periment was split into five blocks and only one token from each contin-
uum appeared in each block. The assignment of item to block was also
pseudorandomized in a Latin-square fashion. This resulted in 25 unique
experimental orders, across which items were matched for block order
and match–mismatch assignment.

The experimental protocol was as follows. First, a fixation cross was
displayed for 500 ms. Then, while the fixation was still on the screen, the
auditory word was presented. If it was a task trial, the visual word ap-
peared 500 ms after the auditory word offset and remained on screen
until participants made a match (left button) or mismatch (right button)
decision with their left hand. If it was a no-task trial (3/5 of trials), a blank
screen was presented and participants could move to the next trial by
pressing either button. The recording lasted �40 min. The apparatus and
experiment presentation software were the same as those used in
Experiment 1.

Data processing (common to both experiments)
All participants’ head shapes were digitized using a hand-held FastSCAN
laser scanner (Polhemus) to allow for coregistration during data prepro-
cessing. Five points on each participant’s head were also digitized: just
anterior of the left and right auditory canal and three points on the
forehead. Marker coils were later placed at the same five positions to
localize each participant’s skull relative to the sensors. These marker
measurements were recorded just before and after the experiment to
track the degree of movement during the recording.

Stimuli were presented binaurally to participants though tube ear-
phones (Aero Technologies). MEG data were recorded continuously us-
ing a 208-channel axial gradiometer system (Kanazawa Institute of
Technology) with a sampling rate of 1000 Hz and applying an online
low-pass filter of 200 Hz.

MEG data from the two experiments underwent the same preprocess-
ing steps. First, the continuous recording was noise reduced using the
continuously adjusted least squares method (CALM) (Adachi et al.,
2001) with MEG160 software (Yokohawa Electric and Eagle Technol-
ogy). The noise-reduced data, digital scan and fiducials, and marker
measurements were exported into MNE-Python (Gramfort et al., 2014).
Bad channels were removed through visual inspection. Independent
component analysis (ICA) was computed over the noise-reduced data
using FastICA in MNE-Python. Components were removed from the
raw recording if they contained ocular or cardiac artifacts, which were
identified based on the topography of magnetic activity and time course
response. The data were then epoched from 500 ms presyllable onset to
1000 ms postsyllable onset for Experiment 1 and 500 ms prephoneme
onset to 1000 ms postphoneme onset for every phoneme in Experiment
2. How we determined the timing of each phoneme is described in the last
paragraph of the “Material creation (common to both experiments)”
section. Any trials in which amplitude exceeded a � 2000 fT absolute or
peak-to-peak threshold were removed. Baseline correction was applied
to the epoch using the 200 ms preceding syllable/word onset.

To perform source localization, the location of the subject’s head was
coregistered with respect to the sensor array in the MEG helmet. For
subjects with anatomical MRI scans (n � 4), this involved rotating and
translating the digital scan to minimize the distance between the fiducial
points of the MRI and the head scan. For participants without anatomical
scans, the FreeSurfer “fsaverage” brain was used, which involved first
rotation and translation and then scaling the average brain to match the
size of the head scan.

Next, a source space was created consisting of 2562 potential electrical
sources per hemisphere. At each source, activity was computed for the
forward solution with the boundary element model method, which pro-
vides an estimate of each MEG sensor’s magnetic field in response to a
current dipole at that source. The inverse solution was computed from
the forward solution and the grand average activity across all trials. Data
were converted into noise-normalized dynamic statistical parameter
map (dSPM) units (Dale et al., 2000) using an SNR value of 2. The inverse
solution was applied to each trial at every source for each millisecond
defined in the epoch using a fixed orientation of the dipole current that

estimates the source normal to the cortical surface and retains dipole
orientation.

Statistical analysis (common to both experiments)
All results reported here are based on mass univariate analyses. We fo-
cused on the following four orthogonal variables. First, “acoustics” refers
to the item’s position along the 11-step acoustic continuum for Experi-
ment 1 and the five-step perceptual continuum for Experiment 2. Sec-
ond, “ambiguity” refers to the absolute distance (measured in
continuum steps) from the perceptual boundary between phonological
categories. Here, we define the perceptual boundary as the position on
the continuum where, on average, participants were equally likely to
classify the phoneme as one category or the other. Third, “VOT” refers to
whether the phoneme was behaviorally classified as voiced (b, d, g) or
voiceless ( p, t, k). Finally, “PoA” refers to whether the phoneme was
behaviorally classified as being articulated as a bilabial (b, p), labiodental
(t, d), or velar stop (k, g). We also included “feature type,” which refers to
whether the phonetic feature being manipulated along the continuum is
PoA or VOT.

Sensitivity to the four stimulus variables was tested at different mo-
ments in the time course of the MEG data across the two experiments. At
the onset of the syllables (see: “Experiment 1: syllable onset” section), at
the onset of the words (see “Experiment 2: word onset” section), at the
onset of the disambiguation point in the words (see “Experiment 2: POD
onset” section), and at the onset of phonemes in the middle of the word
and after disambiguation (see “Experiment 2: each phoneme onset”
section).

Results
Behavioral
To analyze behavioral responses in Experiment 1, we applied a
mixed-effects regression analysis using the lme4 package (Bates et
al., 2014) in R (R Core Team, 2014). We included the above four
variables as fixed effects and by-subject slopes, as well as feature
type, the interaction between feature type and ambiguity, and
feature type with acoustics. The same model structure was used to
fit the reaction time data and the selection data. To assess the
significance of each variable, we removed each variable in turn as
a fixed effect (but keeping it as a by-subject slope) and compared
the fit of that model with the fit of the full model.

For reaction time, we observed a significant effect of ambigu-
ity such that responses were significantly slower for more ambig-
uous items (� 2 � 141.57, p � 0.001). The effect of acoustics was
not significant (� 2 � 3.32, p � 0.068). There was a significant
effect of feature type such that responses were significantly slower
for VOT continua than PoA continua (� 2 � 99.98, p � 0.001).
Ambiguity and feature type revealed a significant interaction
(� 2 � 8.93, p � 0.002). There was no interaction between feature
type and acoustics.

A logistic regression was applied to behavioral selection with
the same model structure and model comparison technique.
Acoustics was a significant predictor (� 2 � 623.26, p � 0.001), as
well as feature type (� 2 � 21.53, p � 0.001). The effect of ambi-
guity was not significant (� 2 � 0.68, p � 0.41). Neither was the
interaction between feature type and ambiguity (� 2 � 2.5, p �
0.11) or feature type and acoustics (� 2 � 2.38, p � 0.12). See
Figure 2 for a summary of the behavioral results.

Overall, the behavioral analysis indicates that the stimuli are
being perceived as intended: we observed a typical psychometric
function and a slowdown in responses for more ambiguous
items.

Neural
To investigate the underlying neural correlates of retroactive per-
ception, we ran a spatiotemporal permutation cluster analysis
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over localized source estimates of the MEG data (Holmes et al.,
1996; Maris and Oostenveld, 2007). This was applied across the
HG and STG bilaterally, searching a time window of 0 –200 ms
after phoneme onset (corresponding to syllable onset, word on-
set, or POD onset). We implemented the test by running a mul-
tiple regression independently at each specified source and time
point. Spatiotemporal clusters were formed for each variable
based on adjacent � coefficients over space and time. In all anal-
yses, we used a cluster forming threshold of p � 0.05 with a
minimum of 10 neighboring spatial samples and 25 temporal
samples. See Gwilliams et al. (2016) for more details concerning
this analysis technique.

In the multiple regression, we simultaneously included the
four variables described above: acoustics, ambiguity, VOT, and
PoA. Trials were grouped into phoneme categories based on par-
ticipants’ average behavioral responses in Experiment 1. Trial
number and block number were included in all models as nui-
sance variables. The same analysis was conducted for both Exper-
iment 1 and 2.

Experiment 1: syllable onset
In terms of main effects, there was a significant effect of ambigu-
ity, which formed two significant clusters: one in left HG (45–100
ms, p � 0.005) and one in the right STG (105–145 ms, p � 0.029).
Acoustics formed a cluster in right HG, but it was not significant
in the permutation test (40 –75 ms, p � 0.125). VOT significantly
modulated responses in right STG (85–200 ms, p � 0.001) and
PoA in left STG (90 –150 ms, p � 0.001).

The results for Experiment 1 are displayed in Figure 3, A and B.
Experiment 1: acoustic analysis. We were surprised to observe

such early sensitivity to phonological ambiguity. Because we ob-
serve the effect at 50 ms after onset (Fig. 3A), it must reflect a
response to not substantially more than the first 20 ms of the
acoustic signal; for example, just the noise burst of the voiceless
items and the initial voicing of the voiced items (based on timing
estimates from the peak of evoked activity). This is because the
latency between the onset of an acoustic stimulus and the first
spike in primary auditory cortex (A1) can be as late as 30 ms,
depending upon acoustic amplitude (for a review, see Heil,
2004). Also see Steinschneider et al. (1995) for a similar estimate
for the latency response to syllables in primate A1. Therefore, a
conservative estimate of how much acoustic signal has reached
HG to drive the early ambiguity effect is �20 ms.

To assess what information is available to the primary audi-
tory cortex at this latency, we decomposed the first 20 ms of each
stimulus into its frequency power spectra using fast Fourier
transform (FFT). A spectral decomposition was chosen because
we wanted to mirror the spectral–temporal input received by
primary auditory cortex. Power at each frequency band from
0 –10 kHz for all stimuli except the fully ambiguous items (leav-
ing four continua steps) was used to train a logistic regression
classifier to decode the phonological category (Fig. 4A). Accuracy
was significantly above chance level, as determined by 1000 ran-
dom permutations of phoneme labels (p � 0.001). The phoneme
category could be decoded from each of the four continua steps,
but accuracy of classification decreased as ambiguity increased
(Fig. 4B). Importantly, continua steps themselves could not be
decoded from this signal (Fig. 4C), suggesting that this early re-
sponse indeed scales with distance from the perceptual boundary
and not acoustic properties per se. This suggests that the early
ambiguity effect that we observed in HG is not driven by, for
example, an acoustic artifact generated during the stimuli mor-
phing procedure.

To pursue the stimulus decoding analysis further, we applied
the same logistic regression classifier to the first 60 ms of acoustic
input, the likely amount of information driving the N100 m re-
sponse (see the introduction). Because the N100m is thought to
reflect processing of an auditory stimulus through a cortical-
thalamic loop and because our estimate is that it takes 20 –30 ms
for the sound stimulus to reach primary auditory cortex, a rea-
sonable estimate for the maximum auditory signal duration driv-
ing the M100 is �80 ms. To be conservative, we chose to analyze
the first 60 ms of acoustic input.

The classifier was trained either on a single 60 ms spectral
segment of the signal or three sequential 20 ms spectral chunks.
The former provides reasonable spectral resolution but poor
temporal resolution; the latter provides the opposite. This novel
analysis revealed intuitive results: the classifier more accurately
distinguished VOT contrasts (a temporal cue) when trained on
three 20 ms chunks and PoA contrasts (a spectral cue) when
trained on a single 60 ms chunk. It may be the case that the
N100m response is driven by neuronal populations that sample
both at fast (�20 ms) and slower (�60 ms) frequencies to accu-
rately identity phonemes that vary across each phonetic dimen-
sion. This analysis also provides additional support that the early
timing of the ambiguity effect is not the result of an acoustic
artifact, but rather reflects a valid neural response to phoneme
ambiguity.

Experiment 2: word onset
In analyzing the results of Experiment 2, we were primarily inter-
ested in responses time-locked to two positions in the word. First
we will present the results time-locked to word onset, which is
also the onset of the phoneme that varies in ambiguity. The anal-
ysis was the same as applied for Experiment 1: spatiotemporal
cluster test using multiple regression.

In terms of main effects: ambiguity formed two clusters in left
HG, one significant and one not significant (150 –182 ms, p �
0.034; 144 –172 ms, p � 0.063). Acoustics elicited sensitivity in
right HG (106 –152 ms, p � 0.019). Sensitivity to VOT was found
in right STG (92–138 ms, p � 0.005); sensitivity to PoA formed
two clusters in left STG (86 –126 ms, p � 0.005; 88 –126 ms, p �
0.028).

The lateralization of effects observed in Experiment 1 was
replicated: sensitivity to ambiguity and PoA in the left hemi-
sphere and to acoustics and VOT in the right hemisphere. Be-
cause we did not apply a statistical analysis explicitly to test for the
lateralization of these effects (as this was not an aim of the study),
we do not want to make claims in this regard. This being said, it is
plausible, based on previous studies, that the left hemisphere is
more tuned to linguistically relevant features of the acoustic sig-
nal (i.e., proximity to the phonological boundary) and the right
hemisphere performs more domain-general computations on
the onset of an acoustic stimulus, thus tracking lower-level prop-
erties (Gage et al., 1998). Further research would need to be con-
ducted to fully understand the hemispheric specialization
associated with these effects.

The ambiguity cluster was identified at �150 ms in the lexical
context, which is later than the effect found for syllable context.
However, when looking at the cluster level t-values across time
(Fig. 5, top left), there was also a clear peak in sensitivity to am-
biguity at �50 ms. To determine whether lexical items also elicit
early sensitivity to ambiguity, we ran a post hoc mixed-effects
regression analysis averaging just in left HG (we used the whole
parcellated region, not just the specific sources identified in Ex-
periment 1) at 50 ms after word onset (the peak of the effect in
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Figure 3. Early responses to ambiguity in left HG (LHG) across the two experiments. A, Experiment 1: Time course of responses for each ambiguity level averaged over significant sources in LHG
plotted separately for PoA and VOT continua. B, Experiment 1: Location of sources found to be sensitive to ambiguity in the spatiotemporal cluster test time-locked to syllable onset. Light-shaded
region of cortex represents the search volume (HG and STG). Average t-value over time is plotted on individual vertices. C, Experiment 1: Averaged responses in significant sources in LHG over the
p50m peak time-locked to syllable onset from 40 to 80 ms. Note that, for the p–t continuum, /p/ is “front” and /t/ is “back.” For the t-k continuum, /t/ is “front” and /k/ is “back.” D, Experiment 2:
Location of sources found to be sensitive to ambiguity in the spatiotemporal cluster test time-locked to word onset. E, Experiment 2: Responses time-locked to word onset averaged from 40 to 80
ms over significant sources. F, Experiment 2: Location of sources found to be sensitive to ambiguity in the spatiotemporal cluster test time-locked to POD onset. G, Experiment 2: Response
time-locked to POD onset averaged from 40 to 80 ms in significant sources. dSPM refers to a noise-normalized estimate of neural activity. **p � .01.
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Experiment 1). Ambiguity, acoustics, feature type, and their in-
teraction were coded as fixed effects and by-subject slopes. This
revealed a significant interaction between ambiguity and feature
type (� 2 � 5.9, p � 0.015) and a significant effect of feature type
(� 2 � 13.14, p � 0.001). When breaking the results down at each
level of feature type, ambiguity was a significant factor for PoA
contrasts (� 2 � 4.84, p � 0.027) and was trending for VOT
contrasts (� 2 � 3.09, p � 0.078). This analysis confirms that the
early ambiguity effect is replicated in lexical contexts, albeit with
weaker responses. Interestingly, the direction of the effect was
reversed for PoA contrasts, whereby more ambiguous tokens
elicited less rather than more activity (Fig. 3C). This interaction
may be due to differences in the task or due to processing syllables
versus words but, again, more research would need to be con-
ducted to piece these apart.

Experiment 2: POD onset
Next we ran the same analysis time-locked to the onset of the
word’s POD. This is the phoneme that uniquely identifies what
word is being said and therefore also disambiguates the identity
of the phoneme at onset. We used the same analysis technique
used to assess responses at word onset.

In terms of main effects: ambiguity modulated early responses
in left HG (50 – 84 ms, p � 0.011); acoustics modulated later
responses in left HG (110 –136 ms, p � 0.043). Sensitivity to VOT
was found in right STG (98 –140 ms, p � 0.01); sensitivity to PoA
was found in left STG (26 –96 ms, p � 0.001).

In sum, sensitivity to ambiguity, acoustics, PoA, and VOT of
the onset phoneme is also present at point of disambiguation,
with similar lateralization to that observed at onset. We can also
see from the condition averages shown in Figure 5 that the overall
pattern of responses is the same at word onset and POD, with a
reverse of polarity. This reverse in polarity reflects a reversal in the
underlying activity in auditory cortex, not a reversal in sensitivity
per se.

Experiment 2: each phoneme onset
Next, we wanted to assess whether the reemergence of sensitivity
to the features of the onset phoneme at POD is specific to disam-
biguation point or if it also reflects a general reactivation process
that could be observed at other positions in the word. To test this,
we analyzed responses time-locked to the first through seventh
phonemes along the length of the word, the disambiguation
point, as well as the first two phonemes after the disambiguation
point (Fig. 6).

Spatiotemporal clustering was not the ideal analysis technique
to use to test this hypothesis because statistical strength cannot be
assessed if a spatiotemporal cluster is not formed, making it dif-
ficult to draw systematic comparisons about the modulation of
an effect over time. Therefore, we instead applied the same mul-
tiple regression analysis reported above, but simply averaged ac-
tivity over left or right auditory cortex and averaged activity
within a set of temporal windows. This provided, for each trial, an
average measure of neural activity for each hemisphere (2) for
each time window we tested (4) for each phoneme position (10).
We corrected for multiple comparisons over these 80 tests using
Bonferroni correction. Because the analysis applied here is more
conservative than the spatiotemporal test, we can expect some
differences in the results reported above for word onset and POD.

The regression was fit to source estimates averaged over just
HG for ambiguity and acoustics and averaged over both STG and
HG in the analysis of PoA and VOT because this is where sensi-
tivity to these variables was observed in the responses to syllable
onset and word onset. The ambiguous items were not included in
the PoA and VOT analyses because their category is ill posed by
definition.

The results of the analysis are presented in Figure 6, showing
the t-values and corresponding Bonferroni-corrected p-values
for each multiple regression that was applied at each phoneme,
time window, and region. For reference, the analysis picks up on

a b

c

Figure 4. Decoding analysis on acoustic stimuli. a, FFT decomposition of first 20 ms of the auditory stimuli plotted for each phoneme continuum. The histogram represents the 1000 permutations
used to determine the significance of classification accuracy. b, Accuracy of the logistic regression classifier in identifying the correct phoneme based on leave-one-out cross validation. Accuracy drops
off for more ambiguous tokens. c, Chance-level accuracy in classifying steps along the continuum.
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Figure 5. Time course of regression analysis for the four primary variables of interest for Experiment 2 time-locked to word onset (left column) and point of disambiguation (right column). A, Location of the
most significant cluster for ambiguity (green) and acoustics (orange) derived from the spatiotemporal cluster test. B, Activity for each step on the continuum, averaged over the spatio-temporal extent of the
cluster, after regressing out the other variables in the model: Plotting ambiguity effect after regressing out acoustics and feature type; plotting acoustic effect after regressing out ambiguity and feature type.
C, Mean t-values averaged in the corresponding cluster for ambiguity and acoustics when put into the same regression model. Note that because the cluster is formed based on the sum of adjacent t-values that
may be either above 1.96 or below �1.96, the mean value over sources is not directly interpretable as “t above 1.96 � p � 0.05.” D, Location of the most significant cluster for PoA (pink) and VOT (blue).
E, Activity averaged for each level of the phonetic features when regressing out the other phonetic feature; for example, regressing out the effect of VOT and then plotting residual activity
along the PoA dimension and vice versa. F, Mean t-values averaged in the corresponding cluster for PoA and VOT when put into the same regression model. *p � .05, **p � .01.
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patterns of activity like those displayed in the condition averages
in Figure 5. The results show that the reemergence of sensitivity to
each of these variables is not just observed at PoD, but also at
intermediate positions along the length of the word. There is not
a clear relationship between the strength of the reactivation and
the phoneme position; for example, the effects do not get system-
atically weaker with distance from word onset. Also note that
fewer trials are entered into the analysis at longer phoneme
latencies because of the varying length of our words. The av-
erage number of trials per subject can be seen along the x-axes
of Figure 6.

There are also some differences depending on the feature be-
ing analyzed: VOT has a particularly strong reactivation at the
third and fourth phonemes, PoA and VOT seem to be reactivated
bilaterally, whereas ambiguity remains left lateralized and acous-
tics remains primarily right lateralized. These are interesting dif-
ferences that will require further investigation.

It is worth highlighting that, although our results are indica-
tive of hemispheric specialization, we did not explicitly test for an
interaction with lateralization. Because of this, we do not want to
make claims about the lateralization of our effects. We leave it to
future studies to test the extent to which these processes are bi-
lateral or specific to a particular hemisphere.

Experiment 2: phonological commitment
To determine whether the system commits to a phonological
category when disambiguation occurs “too late,” we tested for an
interaction between disambiguation latency and whether the
word resolves to the more or less likely word of the pair given
acoustics at onset. The rationale is that, if the system commits to
a /b/, for example, but then the word resolves to a p-onset word,
more effort is required to comprehend the lexical item that was
thrown away during the commitment process. However, if no
commitment has occurred, there should be a minimal difference
between word and non-word resolution because both the cohort
of p-onset and b-onset words are still active.

The analysis had two parts. First, we analyzed responses at the
disambiguation point across all trials, locating where and when
there was an interaction between word/non-word resolution and
POD latency as defined continuously in terms of milliseconds.
The analysis was applied over the time window of 0 –300 ms after
point of disambiguation and over an ROI that included STG and
middle temporal gyrus in the left hemisphere. An interaction was
found between 196 and 266 ms after POD (p � 0.02; Fig. 7A).
Activity was then averaged in this localized region and time win-
dow. Second, we used this average activity to test for an interac-
tion between word/non-word resolution and a discretized

Figure 6. Results of multiple regression applied at each phoneme of the words presented in Experiment 2. Analysis was applied to average source estimates in auditory cortex at different time
windows. For ambiguity and acoustics, activity was averaged over left or right HG (the results for both hemispheres are shown). For PoA and VOT, activity was averaged over left or right STG and HG.
The plotted values represent the t-value associated with how much the regressor modulates activity in the averaged region and time window. The analysis was applied separately at the onset of a
number of phonemes within the words: p0 � word onset; POD � point of disambiguation; �1 � one phoneme after disambiguation point. Bonferroni-corrected p-values are shown for reference:
*p � 0.05; **p � 0.01; ***p � 0.001. Average number of trials per subject is shown below the x-axes because the number of trials entered into the analysis decreases at longer phoneme latencies.
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definition of POD latency coded as either 0 (early) or 1 (late). We
perform this discretization 401 times from 200 to 600 ms, itera-
tively adjusting which trials are considered as having early and
late disambiguation. The period of 200 – 600 ms was chosen be-
cause 95% of the words in the study had a POD latency within this
time range. First, all words with a POD at 200 ms or earlier were
coded as “early”; all those with a POD at 201 ms or later were
coded as “late”; then, all words with a POD at 201 ms or earlier
were coded as “early,” all those with a POD at 202 ms or later were
coded as “late,” and so on. When testing for this interaction sys-
tematically at different latencies, we are able to map out the tem-
poral trajectory of when the system begins to show costs
associated with non-word resolution, which is suggestive of com-
mitment processes (Fig. 7B).

As can be seen in the trajectory shown in Figure 7B, the inter-
action was maximized when setting the boundary between
“early” and “late” between 292 and 447 ms. The effect drops off
after 447 ms, suggesting that, at longer latencies, we begin incor-
rectly grouping together trials where commitment has not yet
occurred (with POD earlier than 450 ms) with trials where com-
mitment has occurred (POD later than 450 ms), thus resulting in
a weaker interaction.

The direction of the interaction is shown in Figure 7C. Words
and non-words elicited indistinguishable responses when disam-
biguation came early; however, there was a significant difference
in response amplitude when disambiguation came late. It is hard
to interpret the direction of this response because the overall
amplitude of the MEG signal changes over time and tends to
decrease as a function of distance from the initial response as
evoked by the onset of the word. The amplitude at “early” and
“late” disambiguation is therefore not directly comparable. Be-
cause of this, it is unclear whether the responses at late disambig-
uation reflect a relative increase for non-words compared with
words or a relative decrease to words compared with non-words.
We offer interpretations for both possibilities in the discussion
below.

When running the same analysis for the ambiguity variable,
no interactions were observed with latency—words that had
an ambiguous onset elicited a stronger response at POD re-
gardless of how many milliseconds or phonemes elapsed be-
fore disambiguation.

We performed the same analysis when defining latency in
terms of elapsed phonemes rather than milliseconds, but no in-
teraction was formed in the first cluster-forming stage.

Overall, it appears that non-words are more difficult to pro-
cess than words when disambiguation of the onset phoneme

comes later than 450 ms. This suggests that the system does in-
deed commit to a phonological category after approximately half
a second. The interaction that we observed may reflect the system
having to reinterpret the input when it has committed to the
wrong category (thus perceiving a non-word) or a relative benefit
in processing valid words when it has committed to the correct
category.

Discussion
In this study, we aimed to address three research questions. First,
does the recognition of phonological ambiguity manifest as an
early perceptual process or a higher-order postperceptual pro-
cess? Second, how is subphonemic maintenance and phonologi-
cal commitment neurally instantiated? Third, what temporal
constraints are placed on the system; in other words, what is the
limit on how late subsequent context can be received and still be
optimally integrated? We discuss our results in light of these three
objectives.

Early sensitivity to ambiguity and acoustics
We found evidence for sensitivity to phonological ambiguity very
early during processing, at just 50 ms after onset in left HG.
Ambiguity was orthogonal to continuum position-that is, linear
acoustic differences-sensitivity to which tended to be right later-
alized and occur slightly later. Although previous studies have
found the p50m to be modulated by VOT (Steinschneider et al.,
1999; Hertrich et al., 2000) and PoA (Tavabi et al., 2007) and
fMRI studies have found sensitivity to ambiguity in primary au-
ditory cortex (Kilian-Hütten et al., 2011) (see the introduction),
this is the first evidence of such early responses tracking proxim-
ity to perceptual boundaries. This finding supports a hierarchical
over reverse-hierarchical processing model (Kilian-Hütten et al.,
2011) because sensitivity is apparent before higher-level linguis-
tic features (e.g., phonetic features, word identity) are processed.
Note that we do not deny the possibility of top-down influence
per se; indeed, it is likely that contextual effects vis-à-vis the ex-
perimental task, stimulus set, and task difficulty play a role. How-
ever, it appears that, relative to the processing of lexical features
specifically, phoneme ambiguity is one of the first to come online.
This suggests that sensitivity to ambiguity is not a byproduct of
processing these higher-order properties, but rather is part of the
earliest sensory stage of processing. This illustrates therefore
that early stages of processing are tuned to strikingly complex
features of the acoustic signal, in this case, the distance be-
tween the acoustic signal and the perceptual boundary be-
tween phonetic features.

A B C

Figure 7. Testing for phonological commitment: analysis pipeline. A, Location of cluster sensitive to the interaction between lexical resolution (word v. non-word) and continuous latency of POD
as defined in milliseconds. B, Time course of interaction between lexical resolution and “early” versus “late” disambiguation. “Early” is defined as at or before the increment from word onset shown
on the x-axis; “late” is defined as after the millisecond on the x-axis. The split from green to red shows the final position that the interaction is still significant (450 ms). C, Condition averages for the
early/late word and non-words at POD. A significant interaction can be seen when splitting responses at 450 ms.
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Because of the time that it takes the acoustic signal to reach
primary auditory cortex, the early ambiguity effect must be re-
flecting a response to approximately the first 20 ms of the stimu-
lus. Because we were able to decode phoneme category from the
spectrotemporal properties of the first 20 ms of the acoustic stim-
uli (Fig. 4), it is clear that phoneme category information is pres-
ent in the signal (also see Blumstein et al., 1977 and Stevens and
Blumstein, 1978 for a similar conclusion in voiced PoA con-
trasts). This is consistent with an analysis by synthesis model
(Halle and Stevens, 1962; Poeppel and Monahan, 2011) in which
responses reflect the number of candidate phonemic representa-
tions generated by the first �20 ms of acoustic signal. Neurons
fire more when the search space over phonemic hypotheses is
larger and less when there are fewer possibilities.

In addressing the first question, then, it appears that sensitiv-
ity to phonological ambiguity indeed reflects an early perceptual
process and is not driven by higher-order lexical properties.

Reemergence of subphonemic detail
We observed a reemergence of sensitivity to the ambiguity,
acoustics, PoA, and VOT of the word-onset phoneme at interme-
diate phoneme positions along the length of the word, at the
disambiguation point, and at the two phonemes after disambig-
uation. This was specifically time-locked to the onset of each
incoming phoneme and was not apparent when analyzing based
on the time elapsed from word onset (cf. Figs. 5, 6). This novel
finding is critically important because it supports the hypothesis
that the subphonemic representation of a speech sound is main-

Figure 8. Schematic model of processing stages. Acoustic input in the form of spectrotemporal information is fed to primary auditory cortex (i). Here, we hypothesize that subphonetic acoustic
information of the input is compared with an internal representation of the perceptual boundary between phonetic features. The absolute distance from the boundary is computed, which
corresponds to phoneme ambiguity as tested in this study. The signed distance (i.e., closer to one category or another) corresponds to phoneme acoustics. This processing stage is therefore the locus
of the ambiguity effect, although we do not claim that ambiguity is neurally represented per se. Next, this travels to STG (ii), where the phonetic features of a sound (e.g., VOT, PoA) are processed.
Note that it is likely that other features of the sound, such as manner, are also generated at this stage, as indicated by the ellipsis. The outputs of these two stages are fed to a neural population that
tries to derive a discrete phonological representation based on the features of the input (iii). This stage represents the “phoneme commitment” process, which converges over time by accumulating
evidence through its own recurrent connection, as well as feedforward input from the previous stages and feedback from the subsequent stages. The output of the processes performed at each
phoneme position then feeds to a node that tries to predict the phonological sequence of the word (iv) to activate potential lexical items based on partial matches with the input (v). Note that both
/p/- and /b/-onset words are activated in the example because both cohorts are partially consistent. Below, we show the anatomical location associated with each processing stage.
Stage i (processing subphonetic acoustic detail) is located in HG bilaterally (in green). Stages ii–iii (processing phonetic features) is in STG bilaterally (in blue). Stage v (activating lexical candidates)
is in left middle temporal gyrus (in purple). Note the similarities with the functional organization of the dual-stream model proposed by Hickok and Poeppel (2007).
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tained in superior temporal regions throughout the duration of a
word even while subsequent phonemes are being received, per-
haps suggesting that the percept of a speech sound is reassessed at
each increment based on the provision of additional input. We
refer to “subphonemic representations” here because there is not
just prolonged sensitivity to phoneme ambiguity but rather pro-
longed sensitivity to all four of the orthogonal linguistic dimen-
sions that we tested. Together, these dimensions make up what
one may sensibly consider the neural representation of a speech
sound. We also have evidence that ambiguity plays an additional
role in modulating lexical predictions above and beyond subpho-
nemic maintenance (Gwilliams et al., 2018). From this perspec-
tive, prolonged sensitivity to ambiguity may also arise from
subsequent difficulty in processing the identity of a word with an
ambiguous onset, which is consistent with a prediction error ac-
count (Rogers and Davis, 2017).

Further, it appears that phonemic reactivation is a general
feature of speech comprehension rather than a specific mecha-
nism recruited in the presence of ambiguity. Specifically, our
results indicate that subphonemic information is maintained
even when uncertainty about phoneme identity is low in two
ways. First, reemergence of phonetic properties was not specific
to the ambiguous tokens; it also occurred for the unambiguous
phonemes. Second, information about phonetic features contin-
ues to be conserved after disambiguating information became
available. Overall, these observations are the first to reveal that
subphonemic information is maintained, not just in terms of
uncertainty about categorization, but also in terms of fine-
grained phonetic and acoustic detail of the phoneme under scru-
tiny. Both sources of information continue to be revisited over
long timescales. This answers a long-standing question from the
psycholinguistic literature (Bicknell et al., 2016).

In addressing our second research question, it appears that sub-
phonemic maintenance is instantiated by maintaining phonetic,
acoustic, and uncertainty information in auditory cortex and reacti-
vating that information at the onset subsequent phonemes.

Commitment to phonological categories
Finally, we do see evidence for phonological commitment resolv-
ing on a timescale of �300 – 450 ms (Fig. 7). The superiority of
defining latency in terms of elapsed milliseconds rather than pho-
nemes may indicate that commitment is based on the amount of
time or number of completed processing cycles rather than inter-
vening information. This process is supported by higher auditory
processing regions in anterior STG, a location consistent with a
meta-analysis of auditory word recognition (DeWitt and Raus-
checker, 2012). Critically, phonological commitment seems to be
computed in parallel to, and independently from, the mainte-
nance of subphonemic detail in primary auditory regions. Before
�300 ms, there is no cost associated with resolution to a lexical
item less consistent with word onset: listeners do not get tempo-
rarily misled (garden-pathed) provided resolution comes early
enough (Fig. 7C, green bars). This suggests that the cohort of
words consistent with either phonological interpretation is con-
sidered together (e.g., in the presence of b/p ambiguity, both the
p-onset and b-onset words are activated). This is fully consistent
with previous behavioral studies (Martin and Bunnell, 1981;
Gow, 2001; Gow and McMurray, 2007) and a previous eye-
tracking study (McMurray et al., 2009) that used similar materi-
als and found look-contingent responses to be dependent upon
phonetic information at lexical onset until at least �300 ms (the
longest disambiguation delay they tested). However, after �450
ms, a difference begins to emerge when there is a mismatch be-

tween the more likely word given word onset and the resolving
lexical information (Fig. 7C, red bars) (e.g., “barricade” is more
likely if the onset phoneme was more b-like than p-like, so hear-
ing “parakeet” is a mismatch). Because of the dynamics of the
MEG response, it is hard to know whether the crux of this effect
reflects a relative benefit for processing words (resulting in less
activity) or a relative cost for processing non-words (resulting in
more activity). If the former, committing to the correct phoneme
entails receiving subsequent input that is consistent with expec-
tations, making it easier to process. Conversely, committing to
the incorrect phoneme leads to subsequent input outside of ex-
pectations, leading to something like a prediction-error response
(Gagnepain et al., 2012). If the latter, increased responses to non-
words may reflect the recruitment of a repair mechanism and
reanalysis of the input from making an incorrect commitment.

Finding maintained sensitivity to subphonemic detail in par-
allel to phonological commitment is very important for the in-
terpretation of psychophysical research, which has implicitly
equated insensitivity to within-category variation with phono-
logical commitment (Connine et al., 1991; Szostak and Pitt, 2013;
Bicknell et al., 2016). This previous work has largely converged on
a processing model whereby phonological commitment can be
delayed for around 1 s after onset. Our results indicate that, in
contrast, whereas subphonemic detail is indeed maintained over
long timescales, this does not implicate that commitment is also
put off for this length of time. Phonological commitment and
subphonemic maintenance appear to be independent processes;
it is not the case that lower-level information is discarded by the
system once higher-level representations are derived.

In sum, the answer to our third research question is that sub-
sequent context can be optimally integrated if it is received within
approximately half a second, which is when the system commits
to a phonological interpretation. However, subphonemic de-
tail is maintained past the point that the system makes such a
commitment.

Relationship to models of speech processing
It is unclear which model of speech processing can account for
these data. Although Shortlist (Norris, 1994) and Shortlist B
(Norris and McQueen, 2008) may be able to model recovery from
lexical garden paths, they do not explicitly model processing of
subphonemic detail. Although the MERGE model (Norris et al.,
2000) is capable of modeling such detail, it proposes no feedback
from the lexical to phonological levels of analysis. This is incon-
sistent with the observation that lexical information also serves to
modulate the phonological commitment process (Gwilliams et
al., 2018). Although it has been demonstrated that TRACE (Mc-
Clelland and Elman, 1986) can be modified to simulate recovery
by removing phoneme-level inhibition (McMurray et al., 2009),
it does not provide the architecture to model initial sensitivity to
phoneme ambiguity or account for how the percept of speech
sounds is modulated by past and future linguistic information
(see Grossberg and Kazerounian, 2011 for an overview of TRACE
limitations). It is also unclear whether this modification would
interfere with TRACE’s success in accounting for a range of ob-
servations in spoken word recognition (for review, see Gaskell,
2007). One model proposed to deal with TRACE’s shortcoming is
adaptive resonance theory: each speech sound produces a reso-
nance wave that is influenced by top-down information until it
reaches equilibrium and surfaces to consciousness (Carpenter
and Grossberg, 2016). Although this theory is consistent with the
idea that there is a critical time limit to receive top-down infor-
mation, it suggests that there is a linear decay in subphonemic
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information as temporal distance from the phoneme increases.
Our results do not support that conjecture. Instead, they suggest
that subphonemic information is re-evoked later in processing
with a similar magnitude as that experienced at onset. In light of
the present results, one shortcoming of these models is their at-
tempt to explain spoken word recognition with a single mecha-
nism built on the assumption that acoustic-phonetic information
is lost once a phonological categorization is derived. Instead, our
results suggest that a multi-element processing model is more
appropriate, allowing for a dynamic interaction among subpho-
netic, phonetic, phonological, and lexical levels of analysis.

The model depicted in Figure 8 offers a mechanistic explana-
tion for the four main findings of the present study. First, early
sensitivity to ambiguity is captured by placing the processing of
subphonetic acoustics as one of the first cortical operations per-
formed on the signal in HG. Here, we propose that the acoustic
input is compared with a representation of the perceptual bound-
ary between phonetic features. The absolute distance between the
input and the boundary corresponds to our “ambiguity” variable.

Second, most nodes in the model are depicted with a recurrent
connection. This is critical because it allows the system to main-
tain multiple representations in parallel and over long timescales.

Third, we hypothesize that each phoneme of the input goes
through the same set of processes, and uses the same neural ma-
chinery (though, here we only have evidence for the first pho-
neme position, p0). This could explain why information about
the previous phoneme reemerges at subsequent phoneme posi-
tions and the maintained signal held in the recurrent connections
only becomes detectable when we “ping the brain” with addi-
tional input (Wolff et al., 2017).

Finally, phonological commitment is captured by an evidence
accumulation process, which receives bottom-up input from the
phonetic features, top-down input from lexical processes, and
self-terminating connections to converge to a particular category.
This idea of evidence accumulation has clear similarities with the
drift diffusion models used to explain perceptual decision mak-
ing (Gold and Shadlen, 2007) and could indeed reflect an analo-
gous process. The consequences of incorrect commitment would
be carried by feedback from the lexical stage: if commitment is
wrong, no lexical items remain consistent with the input at POD
and an error-like signal is fed back to the previous computations.

Conclusion
Later sounds determine the perception of earlier speech sounds
through the simultaneous recruitment of prolonged acoustic-
phonetic maintenance and rapid phonological commitment. In
this manner, quick lexical selection is achieved by committing to
phonological categories early, often before the system is com-
pletely certain that it is the correct choice. In situations where
subsequent information reveals that the wrong phoneme was
chosen, the maintained acoustic-phonetic information can be
reanalyzed in light of subsequent context to derive the correct
commitment. This facilitates rapid contact with lexical items to
derive the message of the utterance, as well as continued revisita-
tion to the phonetic level of analysis to reduce parsing errors. The
human brain therefore solves the issue of processing a transient
hierarchically structured signal by recruiting complementary
computations in parallel rather than conceding to the trade-off
between speed and accuracy.
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