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Abstract 
A central challenge to cognitive neuroscience consists in decomposing complex brain signals            
into an interpretable sequence of operations - an algorithm - which ultimately accounts for              
intelligent behaviors. Over the past decades, a variety of analytical tools have been developed              
to (i) isolate each algorithmic step and (ii) track their ordering from neuronal activity. In the                
present chapter, we briefly review the main methods to encode and decode temporally-resolved             
neural recordings, show how these approaches relate to one another, and summarize their main              
premises and challenges. Throughout, we illustrate with recent findings the increasing role of             
machine learning both as a method to extract convoluted patterns of neural activity, and as well                
as an operational framework to formalize cognitive processes. Overall, we discuss how modern             
analyses of neural time series help identify the algorithmic bases of cognition. 

  



Introduction 
An algorithm is a sequence of simple computations designed to solve a complex             

problem. Under this definition, a major goal of cognitive neuroscience therefore consists in             
uncovering the algorithms of the mind: i.e. identifying the nature and the order of computations               
implemented in the brain to adequately interact with the environment ​(Marr, 1982)​. 

Over the years, this foundational endeavor has adopted a variety of methods, spanning             
from the decomposition of reaction times ​(Donders, 1969; Sternberg, 1998) to modern            
electrophysiology and neuroimaging paradigms. In the present chapter, we focus on two major             
pillars necessary to recover an interpretable sequence of operations from neuronal activity.            
First, we review how individual computations can be isolated by identifying and linking neural              
codes to mental representations. Second, we review how the analysis of dynamic neural             
responses can recover the order of these computations. Throughout, we discuss how the recent              
developments in machine learning not only offer complementary methods to analyze convoluted            
patterns of neural activity, but also help to formalize the computational foundations of cognition. 

 

 
 
Figure 1. ​The representational paradigm consists of three challenges: (i) identifying the            
content of mental representations, (ii) determining how this information is encoded in the             
brain, and (iii) linking these two levels of description. These challenges increasingly benefit             
from statistical modeling and machine learning. In this view, decoding analyses predict            
experimental factors (e.g. the speed of a hand movement, the luminance of a flashed image               
etc) from specific brain activity features (e.g. spike rate, electric field, etc.), whereas encoding              
analyses predict the reverse. Currently, the relevant features of i) brain activity and ii)              
experimental factors are defined ​a priori by the experimenters and mapped onto one another              
with linear mapping. However, the capacity of machine learning to find non-linear structures in              
large datasets may ultimately help finding what the brain represents and how. 
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1. Neuronal activity: codes and contents. 

1.1 The triple-quest of cognitive neuroscience. 
Three challenges must be addressed to isolate the elementary computations underlying           

a given cognitive process (Fig. 1). First, we must identify what ​variables ​the brain generates and                
exploits to solve a particular task; in other words, what the psychologically relevant dimensions              
are. For example, speech has been formally described in terms of phonemes (e.g. /b/, /p/, /k/)                
but the existence of these psychological variables has been debated given their extensive             
overlap with low-level acoustic properties (e.g. ​(Hickok, 2014)​. In a recent study, Mesgarani et              
al. have shown that activity of the superior temporal gyrus in response to speech is better                
accounted for by phonetic features than by acoustic ones ​(Mesgarani, Cheung, Johnson, &             
Chang, 2014)​. This suggests that the brain computes phonetic variables to understand speech.             
More generally, the search for the relevant mental variables is ubiquitous in cognitive             
neuroscience. For example, studies have been able to characterize the neural bases of faces              
(Freiwald & Tsao, 2010; Haxby, 2006; Nancy Kanwisher, 2001)​, word strings ​(Dehaene &             
Cohen, 2007; Price, 2010)​, and semantics ​(Huth, de Heer, Griffiths, Theunissen, & Gallant,             
2016)​, to name a few. 

Second, we must identify ​how neurons read and communicate such informational           
content. For example, the fact that neurons usually do not discharge at precise moments has               
led some to claim that they transmit information through spike rate, rather than through the               
precise time at which they spike ​(Shadlen & Newsome, 1998)​. By contrast, the short duration of                
certain cognitive processes has led others to argue that spike timing may also carry additional               
information ​(Kistler & Gerstner, 2002)​. More generally, whether neurons and neural populations            
code information via their firing rates ​(Shadlen & Newsome, 1998)​, their oscillatory activity             
(Buzsaki, 2006; Fries, 2005; Singer & Gray, 1995)​, or even in the interaction between spikes               
and the phase of local field potentials ​(Bose & Recce, 2001; Lisman & Idiart, 1995) remains an                 
outstanding research question. 

Third, we must identify how these two levels of description—​what is coded and ​how it is                
coded—relate with one another: i.e. we must find the patterns of neural activity (e.g. a spike or                 
an oscillation) that are both sensitive and specific to putative variables (e.g. the position of a rat                 
in a maze). In the context of correlational settings, such as neuroimaging and             
electrophysiological recordings, solving the code-content equation (Fig. 1.) is asymmetric. Either           
the code is assumed and multiple variables are comparatively tested, or ​vice versa​. For              
example, one can assume a rate code and compare how the position of a rat in a maze predicts                   
spike activity ​(O’Keefe & Dostrovsky, 1971)​. Reciprocally, one can assume that spatial locations             
are coded in the brain and compare how spike rates and the oscillations of the local field                 
potentials predict this variable ​(Agarwal et al., 2014)​. 
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1.2 The statistical framework of encoding and decoding analyses. 
 

 
 

Figure 2. Left. ​The most common models used in cognitive neuroscience can be             
distinguished with three main dimensions of the statistical framework. Models that are trained             
to estimate a conditional probability P(y|x) between two sets of variables (e.g. x=psychological             
variables, y=neuronal recordings, or vice-versa) are referred to as ‘discriminative’. By           
contrast, models that estimate the joint distribution P(x,y) are considered to be ‘generative’. All              
generative models can thus be used then to derive P(y|x) for prediction. These models are               
‘supervised’ in that they are trained to predict one variable (e.g. y) from another (e.g. x). By                 
contrast, ‘unsupervised’ models estimate the distribution of a single (possibly          
multidimensional) variable (x). Finally, a trained model can ultimately be used for different             
purposes: e.g. decoding or encoding (see Fig. 1). ​Right. Examples of classical supervised             
and unsupervised models. 

 
The asymmetry of the code-content mapping contributes to the distinction between           

encoding and decoding analyses. Specifically, encoding consists in predicting neuronal          
responses from internal (e.g. confidence) or environmental variables (e.g. the presence of an             
object): P(brain activity pattern | variables). Conversely, decoding consists in predicting           
variables from neuronal activity: P(variables | brain activity pattern) (Fig 1-2). Generally,            
encoding and decoding both depend on multivariate models whose objective is univariate,            
meaning that they fit several parameters to minimize a scalar that results from a loss function                
(Fig. ​3​) For example, fMRI studies routinely use encoding analyses by fitting a general linear               
model (GLM) to evaluate the extent to which multiple variables independently contribute to             
blood-oxygen-level dependent (BOLD) measurements. Such variables can be difficult to          
orthogonalize ​a priori ​(i) because of the slow temporal profile of the BOLD response or (ii)                
because the variables of interest can intrinsically covary (e.g. in natural images, the orientation              
of visual edges correlate with their spatial position: ​(Sigman, Cecchi, Gilbert, & Magnasco,             
2001)​. Conversely, decoding analyses are predominantly used to maximally predict subjects’           
behavior or postdict their sensory stimulations. For example, brain-computer interfaces (BCI)           
studies typically examine several collinear patterns of brain activity in order to maximally predict              
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subjects’ actions, intentions ​(Lebedev & Nicolelis, 2006) or mental state ​(Zander & Kothe,             
2011)​. 

 

 
Figure 3. Top​. ​Statistical modeling follows a standard multi-step pipeline which starts with 1)              
preprocessing (any transformation that can be defined independently of the data: e.g.            
filtering), followed by 2) model fitting on a subset of training data, 3) prediction and 4) scoring                 
of independent and identically distributed held-out test data. The score (a.k.a           
“goodness-of-fit”, “prediction error”, here labelled as e​w​) can be summarized with a variety of              
metrics (e.g. accuracy, AUC, R​2​, cross-entropy, F-value etc.). Finally, one can subsequently            
perform model comparison to interpret results. ​Middle. ​The fitting stage can make use of a               
variety of models such as support vector machines (SVM) or ordinary least squares (OLS).              
These models can be formalized as maximum a posteriori (MAP), which balances the data              
likelihood (red) and the priors on the distribution of the model parameters (blue). These model               
parameters can be found with optimization, which consists of jointly minimizing the loss and              
regularization function. Note that for categorical models (e.g. logistic regression, SVM), the            
predicted values ŷ are subsequently transformed into discrete categories. ​Bottom. ​Example           
of common linear models used in cognitive neuroscience, together with their corresponding            
loss, regularization and optimization functions. 

 
A variety of multivariate linear analyses are routinely used in cognitive neuroscience, and             

range from linear discriminant analysis (LDA) and general linear model (GLM) to ridge and              
logistic regression and, more recently, to algorithms developed in the field of machine learning              
such as linear support vector machines (SVM). Despite their various denominations and            
historical origins, these analyses can be described within a common statistical framework (Fig.             
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3. Bottom). For example, they can be solved via the same convex optimization and identify the                
linear combination of features that maximally predict a brain response (e.g. encoding a spike) or               
a putative variable (e.g. decoding the presence of a face). In the context of electrophysiology               
and neuroimaging data, most of these analyses lead to similar results ​(Hastie, Tibshirani, &              
Friedman, 2009; Lebedev & Nicolelis, 2006; Gaël Varoquaux et al., 2017)​. However, distinct             
multivariate linear analyses assume distinct data distributions (e.g. LDA assumes normal           
distributions and equal variance-covariance matrices across classes, whereas logistic         
regression does not). Consequently, the choice of analysis depends on the problem (e.g.             
regression or classification), the amount of data, and its distribution (e.g. if the data are normally                
distributed, LDA can outperform logistic regression and ​vice versa​). Interpreting the parameters            
of an analysis can be particularly challenging, because i) all parameters are simultaneously             
fitted, which makes the interpretation of individual parameters difficult, ii) some parameters may             
be related to the noise distribution, and iii) a given parameter need not actually impact the                
goodness of fit of a given model ​(Davis et al., 2014; Haufe et al., 2014; Hebart & Baker, 2018;                   
Todd, Nystrom, & Cohen, 2013)​. For model interpretation, it is thus advised to supplement              
inspection of model parameters with an explicit model comparison evaluated on prediction error.  

Encoding and decoding models are not always subject to comparable constraints, and            
can thus lead to different conclusions. In particular, decoding can pick up uncontrolled noise or               
signal structures in brain activity in a way that encoding cannot. For example, if an encoding                
model predicting the neural response to an image shows that its ​luminosity improves the              
prediction of brain activity, one can conclude that ​luminosity causally influences brain activity             
(provided that a number of assumptions are met, see ​(Weichwald et al., 2015)​. However, no               
causal conclusion may actually be drawn from an analogous decoding model: e.g. if including              
parietal neurons in a decoding model improves the decoding performance of image ​luminosity​,             
parietal activity may not necessarily be caused by ​luminosity​. Instead, parietal activity may             
simply reflect subjects’ vigilance, which itself modulates the representation of ​luminosity in            
sensory regions; combining sensory and parietal regions may thus improve the decoding            
performance of ​luminosity​. In this sensory-based paradigm, decoding can thus be less            
conclusive than encoding. However, this difference in conclusiveness comes with a benefit:            
because the decoding model can capture uncontrolled factors (e.g. vigilance), its predictive            
power may surpass the encoding model’s (see ​Davis et al. (2014)​ for a related issue).  

Overall, encoding and decoding models can therefore be profoundly distinct in their            
ability to detect and make use of uncontrolled factors and confounds. For a more detailed               
discussion on the causal inference and on the interpretation of encoding and decoding models,              
we refer the reader to ​(Haufe et al., 2014; Weichwald & Grosse-Wentrup, 2017; Weichwald et               
al., 2015)​. 

1.3 Where do the linearity assumptions come from? 
Most encoding and decoding analyses are based on linear modeling. This linear            

constraint is motivated by two theoretical principles: i) the general “linear superposition”            
principle, and ii) the neurocentric “linear readout” principle (Fig. 4). 
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Linear superposition. ​The linear superposition principle is a general assumption based           
on the notion that measurements derive from a weighted sum of underlying sources. For              
example, the electric potential measured by an electrode depends on the electric reference, the              
local field potential, as well as on the pre and postsynaptic activity of surrounding neurons.               
Following Maxwell’s equations, under the quasi-static approximation, the electric fields of these            
sources linearly sum onto the electrode, and do not interact with one another. Similarly, the               
analysis of hemodynamic responses is often based on an analogous assumption: each voxel             
contains hundreds of thousands of neurons whose activity is summarized in a unique BOLD              
measurement. Under the linear superposition assumption, a measurement (from an electrode,           
from a voxel) linearly covaries with a variable only if one or a combination of sources (the                 
underlying neural responses) linearly covaries with such variables. When multivariate          
measurements are available (e.g. spatially distributed electrodes), it is possible to separate the             
independent contribution of several sources, based on physical assumptions (as in           
magneto-encephalography (MEG) source reconstruction ​(Hämäläinen, Hari, Ilmoniemi, Knuutila,        
& Lounasmaa, 1993)​, or based on statistical assumptions (as in spike sorting: e.g. ​(Quiroga,              
Nadasdy, & Ben-Shaul, 2004)​. Note that the linear superposition assumption is generally            
applicable within a limited range. For example, the BOLD response is known to saturate above               
certain values, above which the linear superposition assumption fails to hold ​(Heeger & Ress,              
2002)​. 

Linear readout. The linear read-out principle is mainly relevant to decoding analyses. It             
builds upon the assumption that individual neurons can be approximated as a non-linear             
transformation (e.g. a spike) of a weighted sum of input (e.g. the sum of excitatory and inhibitory                 
presynaptic potentials). Consequently, distributed patterns of simultaneous neuronal activity are          
thought to represent variables because any neuron connected to this distributed population can             
systematically covary with such variables ​(Hung, Kreiman, Poggio, & DiCarlo, 2005; Kamitani &             
Tong, 2005; King & Dehaene, 2014; Kriegeskorte & Kievit, 2013; Misaki, Kim, Bandettini, &              
Kriegeskorte, 2010)​. The linear readout principle clarifies the distinction between information           
and explicitly-represented features. For example, the retina may encode ​information about faces            
and letter strings, but would not explicitly ​represent these categories, in that faces and letter               
strings cannot be linearly separated from retinal activations. By contrast, the fusiform face             
regions ​(N. Kanwisher, McDermott, & Chun, 1997; Tsao, Freiwald, Tootell, & Livingstone, 2006)             
and the visual word form area ​(Dehaene & Cohen, 2011) have been shown to linearly map                
these two types of visual categories onto their patterns of neuronal activity. 
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Figure 4. ​Left. ​The electro-magnetic fields produced by neurons linearly project onto            
polytrodes, electro-corticography (ECoG) or magneto-electroencephalography (M/EEG)      
sensors. A similar concept of linear mixture can be extended to fMRI: each voxel              
approximates a weighted sum of BOLD responses. Overall, measuring channels can thus be             
used to infer the underlying neural responses. ​Right​. Neuronal computations can be            
approximated as non-linear functions (i.e. spike) applied onto weighted combinations of           
synaptic inputs. Statistically, this means that neurons are sensitive to (i.e. “read”) linearly             
separable inputs. 

 
It is important to highlight that encoding and decoding analyses are equally limited in              

their ability to determine whether a representation ​de facto constitutes information that the             
neural system ​uses​. For example, one may find a linear relationship between a variable and (i)                
a spike, (ii) an increase in BOLD response, or (iii) an oscillation of a linear combination of EEG                  
sensors, without that variable being effectively read and used by any neuron. Similarly to other               
correlational methods, encoding and decoding should thus be used in conjunction with            
comparative computational modeling and experimental manipulations in order to identify the           
causal or epiphenomenal nature of an identified pattern of brain activity. 



1.4 Challenges of representational paradigm and the promises of         
Machine Learning. 

Constraining the triple-quest of cognitive neuroscience (Fig. 1) to linear modeling leads            
to two main challenges. First, and as discussed elsewhere ​(Ritchie, Brendan Ritchie, Kaplan, &              
Klein, 2017)​, the linear readout assumption undermines the non-linear readout abilities of            
certain neurons ​(Brincat & Connor, 2004; Chichilnisky, 2001; Mineault, Khawaja, Butts, & Pack,             
2012; Sahani & Linden, 2003; Van Steveninck & Bialek, 1988)​, cortical columns ​(Bastos et al.,               
2012) and large neural assemblies ​(Ritchie et al., 2017)​. The definition of an explicitly encoded               
variable is thus likely to change with our improved understanding of the neuronal codes. 

Second, linear modeling implies a strong dependence on ​a priori ​human insight            
(Kording, Benjamin, Farhoodi, & Glaser, 2018)​. Specifically, linear models only fit the features             
explicitly provided by the experimenter. They are thus limited in their ability to identify              
unexpected patterns of neuronal activity, or unanticipated mental representations. For example,           
the discovery of grid cells — hippocampal neurons that fire when an animal is located at                
regularly-interspaced locations in an arena — resulted from human insights from visual data             
inspection. Indeed, Moser et al. had to view their electrophysiological recordings in a spatial              
representation before they could conjecture the grid coding scheme ​(Fyhn, Molden, Witter,            
Moser, & Moser, 2004; Moser, Kropff, & Moser, 2008)​. Only then did they implement a grid                
feature in a linear model to formally test and verify the robustness of this hypothesis ​(Hafting,                
Fyhn, Molden, Moser, & Moser, 2005)​. In other words, a linear model blindly fitting spiking               
activity to a two-dimensional spatial position variable would have missed the seminal discovery             
of grid-coding cells. 

The rapid development of machine learning may partially roll back this epistemic            
dependence on human insights. For example, Benjamin and collaborators have recently           
investigated the ability of linear models to predict spiking activity in the macaque motor cortex               
given conventional variables of the arm movement, such as its instantaneous velocity and             
acceleration ​(Benjamin et al., 2017)​. The authors first show that linear encoding models can              
accurately predict the macaque’s neural responses based on a weighted combination of these             
variables. However, they then demonstrate that linear models are outperformed by machine            
learning models that can efficiently capture non-linear relationships, such as random forests            
(Liaw, Wiener, & Others, 2002) and long short term memory neural networks (LSTMs,             
(Hochreiter & Schmidhuber, 1997)​. In other words, random forests and LSTMs can identify             
unsuspected features of the arm movements that are represented in the neural activity. More              
generally, this study illustrates how machine learning may supplement human insights and help             
to discover unanticipated representations. 

Undoubtedly, applying machine-learning algorithms to cognitive neuroscientific data will         
lead to new challenges ​(Kording et al., 2018; Poldrack & Farah, 2015; Stevenson & Kording,               
2011; Gael Varoquaux & Thirion, 2014)​. In particular, interpreting a multivariate model, and with              
greater reason, a non-linear one, can be particularly difficult. For example, in Benjamin et al.’s               
study discussed above, machine learning algorithms proved to be better at predicting the neural              
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activity associated with arm movements than linear models. However, this came at the cost of               
diminished interpretability: the exact nature of these unsuspected representations captured          
remain currently unclear. Note that interpretability is not a problem specific to non-linear models.              
For example, Huth and colleagues predicted the fMRI BOLD responses to spoken stories ​(Huth              
et al., 2016) from linear combinations of very large semantics vectors derived from latent              
semantic analysis of text corpora. The authors showed that this modeling approach was above              
chance level in a vast number of cortical regions, which thus strengthens the hypothesis of               
distributed representations of semantic features ​(Barsalou, 2017)​. However, to interpret such a            
model, one would need to investigate, for each voxel, the hundreds of coefficients associated              
with each semantic vector. To make things worse, these vectors are not directly interpretable. In               
fact, when the authors used an unsupervised linear model (principal component analysis) to             
summarize the main semantic dimensions that accounted for BOLD activity, they only managed             
to attribute a meaningful interpretation to a small subset of these principal components.             
Consequently, even linear modeling does not necessarily ensure a straightforward          
interpretation.  

Overall, these two studies highlight how the interpretability of a neural representation,            
which has been essential for generating insights and novel hypotheses, runs a risk of becoming               
increasingly anecdotal as models are (justifiably) increasingly evaluated on the basis of their             
prediction accuracy. 

2. From isolated computations to algorithms. 
The above methods isolate the result of individual computations by linking putative            

variables with patterns of neural activity. However, to uncover the ​algorithm of a given cognitive               
ability, one must also identify the order in which these computations are performed. In this               
second section, we will first briefly review a variety of established sequences of neural activity               
and their algorithmic interpretations. We will then summarize the main methods that i) isolate              
specific neural sequences, ii) identify their selective input sequence, and iii) help interpret the              
computations associated with such neural dynamics. 

2.1 Sequences of neural responses across spatial scales. 
With the advances in temporally-resolved fMRI ​(Ekman, Kok, & de Lange, 2017) and the              

increasing ability to simultaneously record multiple neurons ​(Jun et al., 2017) and brain regions              
(Boto et al., 2018; Tybrandt et al., 2018)​, specific sequences of neural activity have been               
revealed across multiple spatial scales. At the network level for example, visual stimulations             
trigger a long cascade of neural responses from occipital to associative cortices (e.g. ​(Gramfort,              
Papadopoulo, Baillet, & Clerc, 2011; King, Pescetelli, & Dehaene, 2016)​, Fig. 5.C). This long              
sequence of brain responses has been successfully compared to the deep convolutional            
networks developed in artificial vision ​(Cichy, Khosla, Pantazis, Torralba, & Oliva, 2016;            
Eickenberg, Gramfort, Varoquaux, & Thirion, 2017; Gwilliams & King, 2017; Kriegeskorte, 2015;            
Yamins et al., 2014)​. At the columnar level, neural activity has been shown to propagate from                
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and to the supra- and infragranular layers of the cortex via frequency-specific travelling waves              
(van Kerkoerle et al. (2014)​, Fig. 5.B), and has been argued to reflect a predictive coding                
algorithm ​(Bastos et al., 2012)​. Finally, at the cellular level, spatial positions ​(Girardeau &              
Zugaro, 2011; Jones & Wilson, 2005) are associated with specific sequences of spikes (Fig.              
5.A) that may reflect learning and anticipatory simulation of spatial navigation ​(Girardeau &             
Zugaro, 2011)​. 

 

 
Figure 5. Sequences of neural responses across multiple spatial scales. Sequences of            
neural responses have been identified with a variety of methods and across various             
spatio-temporal scales. ​A. ​Hippocampal place cells spike when the rodent moves to specific             
spatial positions. When the rodent rests, the previous spike sequence is replayed in reverse              
order (adapted from ​(Girardeau & Zugaro, 2011)​. ​B. ​The 10-Hz oscillatory activity recorded in              
the macaque early visual cortex travels from superficial (red) and deep layers (purple) to the               
granular layer (green) (Adapted from ​(van Kerkoerle et al., 2014)​. C. Visual stimulation             
triggers a long-lasting cascade of macroscopic brain responses, starting from the early visual             
cortex and ultimately reaching the associative areas ​(King et al., 2016)​. 

2.2 Isolating a sequence of processing stages from mixed neural          
activity. 

Overall, these sequences of neural activations and their computational interpretations          
have been mainly established manually. However, a number of signal processing methods have             
recently been put forward to automatically detect and characterize specific spatio-temporal           
patterns of neural activity from high-dimensional recordings.  
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Analyzing neural recordings is often complicated by the fact that, as discussed above,             
they usually result from linear mixtures. For example, polytrodes, ECoG, and MEG all measure              
the fluctuations of the electro-magnetic fields of a linear combination of underlying neural             
electric sources (Fig 4. Left). To assess the spatial dynamics of such linear mixtures, it is thus                 
common to use spatial filtering techniques. For example, one can decompose the evoked             
response to a visual stimulus by fitting a series of linear models, one at each time-sample                
locked to the stimulus onset, in order to track the rise and fall of a given variable (e.g. contrast:                   
King et al., (2016) or the presence of a face: ​Cichy, Pantazis, & Oliva, (2014)​) and test whether                  
a model optimized to decode a variable at time ​t can generalize to decode at time ​t’ ​(King &                   
Dehaene, 2014; Meyers, Freedman, Kreiman, Miller, & Poggio, 2008; Stokes et al., 2013)​. If a               
model generalizes, this suggests that the brain activity pattern it isolated is present at both               
training and testing time samples. By systematically assessing how each model generalizes            
over time, i.e. by building a temporal generalization matrix, it is thus possible to determine               
whether the neural dynamics consists of a sequence of transient activations, a recurrent             
dynamic or simply a sustained activation directly from a linearly-mixed neural time series (Fig              
6.A, ​(King & Dehaene, 2014)​. 

The above methods focus on “evoked” spatial patterns - i.e. neural responses whose             
phases are consistent across trial repetitions. However, analogous spatial-filtering methods          
have been developed to specifically capture “induced” spatial patterns - i.e. linear mixtures of              
neural responses, such as oscillatory activity, whose dynamics are not phase-locked to an             
external event. These methods are generally based on the spatial covariance of            
electrophysiological recordings. For example, the common spatial pattern (CSP) method is a            
popular spatial filtering technique to identify the spatial pattern of neural activity that maximizes              
the discrimination between induced responses of two external events (e.g. left versus right             
hand, e.g. ​(Koles, Lazar, & Zhou, 1990)​. Similarly, the source power comodulation (SPoC)             
method extracts spatial patterns that are modulated by a continuous variable (e.g. hand             
position, e.g. ​(Dähne, Meinecke, et al., 2014)​. Recently, methods that directly use the spatial              
covariance as a feature proved to reach better results ​(Barachant, Bonnet, & Congedo, 2012;              
Barachant, Bonnet, Congedo, & Jutten, 2013; Farquhar, 2009)​.  

These novel techniques have already proved valuable in establishing processing          
sequences. For example, a recent study ​(Heikel, Sassenhagen, & Fiebach, 2018) suggested            
that language processing depends on a sequence of distinct, but partially overlapping stages.             
Such a ​cascading architecture goes against the recurrent or the serial architecture argued by              
others (See ​(Friederici, 2011) for an overview). Similarly, visual selection has recently been             
shown to recruit parallel hierarchies of sensory processing converging into a serial executive             
processing stage ​(Marti & Dehaene, 2017; Marti, King, & Dehaene, 2015)​. Specifically, MEG             
recordings show that subjects can specifically attend to an image presented in a rapid stream,               
and represent its content in the associative cortices. However, temporal generalization showed            
that these late processing stages are systematically delayed when subjects are distracted by             
auditory stimuli, which suggests a strictly serial architecture. Overall, these studies thus illustrate             
how the automatic analyses of high-dimensional neural time series can help recover the             
underlying algorithmic organization of cognitive processes.  
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Figure 6. Decoding and encoding neural sequences. Left. ​Temporal generalization          
consists in fitting a spatial filter at each time sample locked to an event, and testing whether it                  
can be used to decode the brain responses at all time samples. This analysis can be used to                  
determine whether a sustained decoding score results from a stable pattern of neural             
responses, or whether it reflects a series of transient neural responses. Adapted from ​(King &               
Dehaene, 2014) ​Right. ​Temporal receptive field analyses involve first annotating the latent            
dimensions of that characterize the continuously-varying experimental variables - e.g. the           
spectral modulation of an acoustic waveform, the lexical categories of spoken words etc - (top               
left). These features are then transformed into a time-delay matrix whose linear modeling can              
be used to recover the temporal response profile of each feature (bottom right, adapted from               
(Holdgraf et al., 2017)​. 

2.3 Identifying the sequence of inputs detected by a neuronal          
population. 

A second major challenge consists in identifying the sequence of input detected by one              
or several neurons. This approach is particularly common in auditory and speech studies. In              
such cases, it is indeed common to model the neural dynamics with multiple “time-lags” of               
continuously-varying features ​(Almon, 1965; Ho & Kálmán, 1966)​, in order to capture the             
possibility that some neural responses are time-locked to a specific (combination of) events. For              
example, to model auditory and language processing, one can first (i) extract the continuously              
changing envelope of a recorded speech waveform and (ii) annotate the onsets of individual              
words (Fig 6.B, ​(de Heer, Huth, Griffiths, Gallant, & Theunissen, 2017; Holdgraf et al., 2017)​. A                
temporal “receptive field” model can finally be fitted to isolate the neural responses to these               
continuous fluctuations and discrete events respectively. Temporal receptive fields are similar to            
the predominant approach in fMRI analysis, where a design matrix is convolved with an impulse               
waveform which is either assumed (i.e. the canonical hemodynamic response function) or            
estimated from data, eventually improving fMRI encoding and decoding models ​(Pedregosa,           
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Eickenberg, Ciuciu, Thirion, & Gramfort, 2015)​. In the case of electrophysiology, the shapes of              
the impulse response functions are typically not known ​a priori, ​so the impulse response must               
be estimated from the data. 

Temporal receptive fields and related methods can be used to (i) encode the average              
brain responses to categorical events (e.g. ​de Heer et al., 2017; Smith & Kutas, 2015​) and                
spectro-temporal patterns of sensory input ​(Theunissen et al., 2001)​, as well as (ii) decode              
overlapping sequences of neural correlates of discrete ​(Rivet, Souloumiac, Attina, & Gibert,            
2009; Theunissen et al., 2001) and continuously changing events ​(Dähne, Nikulin, et al., 2014)​.              
For example, DiLiberto et al. (2014) have shown that encoding categorical phonemic            
representations in EEG signals provides a superior model fit compared to acoustic features.             
Overall, these methods thus promise to help automatically find the sequence of input that              
maximally drive each brain response. 

2.4 Toward directly mapping algorithms onto brain activity. 
The last decade has been marked by an explosion of machine learning models that              

efficiently mimic basic cognitive operations. Most remarkably, computer vision models can now            
detect, locate, or describe objects in static natural images with accuracy that matches or even               
exceeds human performance (although see ​(Lake, Ullman, Tenenbaum, & Gershman, 2017)​.           
One of the most popular approaches, deep convolutional neural network, takes an image as              
input and sequentially applies a long series of non-linear transformations that are optimized to              
identify objects. Interestingly, this specific sequence of operations has been found to map onto              
both the spatial ​(Cichy et al., 2016; Eickenberg et al., 2017; Gwilliams & King, 2017;               
Kriegeskorte, 2015; Yamins et al., 2014) and the temporal organization ​(Cichy et al., 2016;              
Gwilliams & King, 2017; van de Nieuwenhuijzen et al., 2013) of the visual system in the                
mammalian brain. For example, the activity in the primary visual cortex specifically and linearly              
correlates with the activation in early layers of the artificial neural network, whereas the later               
responses of the inferior temporal cortex specifically and linearly correlate with the activation of              
the deepest layers. This result suggests that the sequence of computations applied by the              
human brain to solve a given task may be parsed and modeled with deep neural networks                
trained to solve the same task. This finding thus supports the notion that the visual system is                 
organized as an extended hierarchy ​(Hubel & Wiesel, 1963; Riesenhuber & Poggio, 1999)​.             
More generally, it illustrates how sequences of brain activity patterns may be interpreted with              
performance-optimized algorithms: the algorithms that (i) can efficiently perform a task while (ii)             
doing so in a way that maps the spatio-temporal characteristics of brain activity, are likely to                
adequately model cognition. 

 
Overall, the rapid development of machine learning provides a threefold promise to            

cognitive neuroscience. First, these tools support the automation, denoising, and summary of            
complex electrophysiological and neuroimaging time series ​(Jas, Engemann, Bekhti, Raimondo,          
& Gramfort, 2017)​. Second, these tools offer an operational ground to data-driven investigation:             
unanticipated patterns of data may be automatically identified from large datasets, without            
requiring the preface of human insight ​(Kording et al., 2018)​. Finally, machine learning and              
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cognitive neuroscience share the common goal of identifying the elementary components of            
knowledge acquisition and information processing. The interface between cognitive         
neuroscience and machine learning is thus mutually beneficial. On the one hand, machine             
learning can help define, identify, and formalize the computations of the brain. On the other               
hand, cognitive neuroscience can help provide insights and principled directions to shape the             
computational architecture of complex cognitive processes ​(Hassabis, Kumaran, Summerfield,         
& Botvinick, 2017; Lake et al., 2017)​. 
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