

Phonological (un) certainty weights lexical activation

Laura Gwilliams, David Poeppel, Alec Marantz & Tal Linzen *7th January 2018*

black

back

ballet blind big
bath bond
band book ballot

break band bind

ballet

bath

band

baptist

ballot

ba

band

balance

back

ballet

ballot

bal

ballot

balə

balan

But what about ambiguity?

 Real world speech is noisy and ambiguous; there is not a direct mapping between speech and phonemes

b b b p

pin ballet prove bath pacify bond palate beef book pants balance paddle bind boast panda

ballet

bath

pacify

palate

ba

pants balance

paddle

panda

ballet

palate

b a l

palate

bala

balan

Two Computational Models

$$P(\varphi_a|A)$$

$$arphi_a$$
 = phonemea

$$\varphi_a$$
 = phoneme_a A = acoustic input

SWITCH-BASED

- 1 cohort of words
- binary acoustic term

ACOUSTIC WEIGHTED

- 1+ cohort of words
- continuous acoustic term

Research Question

Does acoustic-phonetic uncertainty weight activation at the lexical level?

Prediction aids speech comprehension

- The brain **predicts future linguistic content** in terms of phonemes, morphemes, words and syntactic structures
- When input is **predictable**, it is easier to process; reflected as a relative **reduction in neural amplitude**

Quantifying predictability

· Surprisal:

Probability of an outcome

$$-log_2 \frac{f(\varphi_1, \dots, \varphi_t)}{f(\varphi_1, \dots, \varphi_{t-1})}$$

Entropy:

Uncertainty over future input

$$-\sum_{w \in C} P(w|C)log_2 P(w|C)$$

Critical Variables

· Surprisal:

Switch-based Acoustic-weighted

$$-log_2\left(P(\varphi_a|A)\frac{f(\varphi_a,\varphi_2,\ldots,\varphi_t)}{f(\varphi_a,\varphi_2,\ldots,\varphi_{t-1})}Q_a^t + \frac{P(\varphi_b|A)}{f(\varphi_b,\varphi_2,\ldots,\varphi_{t-1})}Q_b^t\right)$$

Entropy:

Switch-based Acoustic-weighted

$$P(w|C, A) = P(w|C_a)P(\varphi_a|A) + P(w|C_b)P(\varphi_b|A)$$

Stimuli

Acoustic weighted: $P(\varphi_a|A) = .75$

Switch-based: $P(\varphi_a|A) = 1$

$$P(\varphi_a|A) = .25$$

 $P(\varphi_a|A) = 0$

Protocol

Procedure & Analysis

Procedure & Analysis

Model Setup

Critical variables:

acoustic-weighted entropy acoustic-weighted surprisal switch-based entropy switch-based surprisal

Control variables:

phoneme latency (ms)
phoneme latency (number of phonemes)
trial number
block number
stimulus amplitude
phoneme pair
ambiguity

Results

Discussion

- Fine-grained acoustic information does weight lexical candidates
- There is a dynamic interaction between different levels of linguistic description: phonological <-> lexical

 Not a single heuristic applied in all situations: perhaps reflects that the brain commits to an interpretation of the phonological

category after a certain period of time

Research Answer

Acoustic-phonetic uncertainty can weight activation at the lexical level

With big thanks to:

 My supervisors, Alec Marantz and David Poeppel, as well as everyone in the Neuroscience of Language Lab and Poeppel Lab!

Funding: G1001 Abu Dhabi Institute

