NEW YORK UNIVERSITY

ransforming acoustic mputinto
a hierarchy of linguistic
representations

Laura Gwilliams, David Poeppel & Jean-Rémi King
8th February 2019

Laura Gwilliams | New York University | @ GwilliamsL



‘ Fimae 2 NAaviait (107

= Taft & Forster (197

| MNutlar ot al [1QQR): Ravs [10QN- 1984)
Taft (1979) » Pinker & Prince (seatgnce——
sHT978] T structure

. lemmas
the fat cat dis | appear | ed
morphemes
A= |
dah fat kat dis ah pee ud syllables

'DHAH FAETKAETDIHSAHPIHRD‘ phonemes

phonetic
features

acoustics




1

1)

which linguistic units are
encoded in brain activity”

nhracal
\
LANGUAGE, COGNITION AND NEUROSCIENCE é ROUtIedge '
https://doi.org/10.1080/23273798.2018.1499946 Taylor & Francis Group
REGULAR ARTICLE 8 OPEN ACCESS "') Check for updates

The revolution will not be controlled: natural stimuli in speech neuroscience
Liberty S. Hamilton®® and Alexander G. Huth®

eS
®Communication Sciences & Disorders, Moody College of Communication, The University of Texas at Austin, Austin, USA; "Department of
Neurology, Dell Medical School, The University of Texas at Austin, Austin, USA; “Department of Neuroscience, The University of Texas at Austin,
~ Austin, USA; “Department of Computer Science, The University of Texas at Austin, Austin, USA
ABSTRACT ARTICLE HISTORY
Humans have a unique ability to produce and consume rich, complex, and varied language in order Received 21 February 2018
to communicate ideas to one another. Still, outside of natural reading, the most common methods Accepted 3 July 2018 <
for studying how our brains process speech or understand language use only isolated words or
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18 participants

Listening to four narrative stories (twice)
2 X one hour recordings

KIT 208 channel MEG system
Engagement task
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~40,000 phonemes per participant
~16,000 words per participant
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Annotate for features and unit boundaries
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Event-locked average response

N,,.=7738

Laura Gwilliams | New York University | @ GwilliamsL



Stmulus features
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Analysis technique
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Analysis technique
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Analysis technique
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Analysis technique
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which linguistic units are
encoded in brain activity?



Across timescales
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Phoneme-locked analysis: Phonetic properties
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Phoneme-locked analysis: Phonetic properties
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Phoneme-locked analysis: Phonetic properties

Phoneme-locked analysis
25

surprisal

20 -

15 -
mainner

entropy

-0.2 0.0 0.2 0.4 0.6
Time (s) relative to phoneme onset

Laura Gwilliams | New York University | @ GwilliamsL



Phoneme-locked analysis: Phonetic properties

Phoneme-locked analysis
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Phoneme-locked analysis: Phonetic properties

Phoneme-locked analysis
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Across timescales
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Word-locked analysis: lexical properties
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Word-locked analysis: syntactic operations
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Word-locked analysis: syntactic operations
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Discussion

(1) Which linguistic units are encoded?
Multiple features, spanning the hierarchy

Including # of syllables; # of morphemes

(2) What is the relative time-course?
Overall a highly parallel architecture
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