

In spoken word recognition, the future predicts the past

Laura Gwilliams

5th June 2017

Road Map

Road Map

Completed Research:

- Sensitivity to **phonological ambiguity** is reflected in the very initial stages (~50 ms) of processing a speech sound
- Sub-phonemic information is maintained for long periods of time, and is reevoked at subsequent phoneme positions in the spoken word
- The system **commits to phonological interpretations** on a shorter time-scale in parallel to phonetic maintenance

Future Directions:

• Can we apply **machine-learning** analysis techniques to MEG data to unveil the dynamics with which sub-phonemic information is processed?

Recognition & Resolution of Phoneme Ambiguity in Spoken Words

Collaborators

Tal Linzen

David Poeppel

Alec Marantz

Speech is an inherently noisy and ambiguous signal

- Speech is an inherently noisy and ambiguous signal
- To fluently derive meaning, listeners must integrate topdown contextual information to guide their interpretation

- Speech is an inherently noisy and ambiguous signal
- To fluently derive meaning, listeners must integrate topdown contextual information to guide their interpretation
- Top-down input occurring after an acoustic signal can be integrated to affect the perception of earlier sounds
 (Bicknell et al., submitted; Connine et al., 1991; Samuel, 1981; Szostak & Pitt, 2013; Warren & Sherman, 1974)

(this is a parakeet)

barakee t

How does the auditory cortex **respond** to phonological ambiguity?

How does the auditory cortex **respond** to phonological ambiguity?

What are the neural signatures of ambiguity resolution?

arak**ee**t 53 x arak**ai**d

• Point of Disambiguation (POD) ranged 3-8 phonemes / 150-750 ms

- Point of Disambiguation (POD) ranged 3-8 phonemes / 150-750 ms
- VOT (31 pairs) {p-b, t-d, k-g} and POA (22 pairs) {t-k, p-t}

- Point of Disambiguation (POD) ranged 3-8 phonemes / 150-750 ms
- VOT (31 pairs) {p-b, t-d, k-g} and POA (22 pairs) {t-k, p-t}

Design & Materials

Design & Materials

Today's Questions

How does the auditory cortex **respond** to phonological ambiguity?

Today's Questions

How does the auditory cortex **respond** to phonological ambiguity?

Sensitivity to phonetic features ~100 ms after onset in superior temporal gyrus:

Simos et al. 1998, Ackermann et al. 1999, Obleser et al. 2003, Papanicolaou et al. 2003, Obleser et al. 2004 Mesgarani et al. 2014, Di Liberto et al. 2015

ppbb

ppbb

- Time-window: 0-200 ms after word onset
- Region: Heschl's gyrus & superior temporal gyrus bilaterally

ppbb

ppbb

p b b b

Ambiguity at Onset

Ambiguity

pbbb

1.0e+10 +

100

Interim Conclusion

Interim Conclusion

Interim Conclusion

Today's Questions

What are the neural signatures of ambiguity **resolution**?

Ambiguity at POD

- Time-window: 0-200 ms after POD onset
- Region: Heschl's gyrus & superior temporal gyrus bilaterally

- Time-window: 0-200 ms after POD onset
- Region: Heschl's gyrus & superior temporal gyrus bilaterally

- Time-window: 0-200 ms after POD onset
- Region: Heschl's gyrus & superior temporal gyrus bilaterally

Information is re-evoked in auditory cortex

- Information is re-evoked in auditory cortex
- Specifically time-locked to the onset of subsequent phonemes

- Information is re-evoked in auditory cortex
- Specifically time-locked to the onset of subsequent phonemes
 - Not driven by residual information in the acoustic signal

- Information is re-evoked in auditory cortex
- Specifically time-locked to the onset of subsequent phonemes
 - Not driven by residual information in the acoustic signal
- Not specific to the ambiguous tokens general to language processing

Today's Questions

How long can the system delay phonological commitment?

Today's Questions

How long can the system delay phonological commitment?

Psycholinguistic investigations into this question:

Connine et al. 1991; Samuel 1991; McMurray et al. 2009; Szostak and Pitt 2013

Example Continuum Pair

Point of Disambiguation (POD) ranged 3-8 phonemes / 150-750 ms

Example Continuum Pair

Point of Disambiguation (POD) ranged 3-8 phonemes / 150-750 ms

no commitment

no commitment

/k/

400

450

Early: POD earlier than

450 ms after word onset

/a/

150

/r/

200

250

300

350

lee!

500

100

/p/

50

Early: POD earlier than

450 ms after word onset

Late: POD <u>later</u> than 450 ms after word onset

200:230 ms

 Sensitivity to phoneme ambiguity ~50 ms after onset in primary auditory cortex

 Sensitivity to phoneme ambiguity ~50 ms after onset in primary auditory cortex

• Subphonemic detail is maintained over long time-scales (+700 ms) and re-evoked at subsequent phoneme positions

 Sensitivity to phoneme ambiguity ~50 ms after onset in primary auditory cortex

• Subphonemic detail is maintained over long time-scales (+700 ms) and re-evoked at subsequent phoneme positions

 Phonological commitment resolves ~450 ms after phoneme onset in superior temporal gyrus

Future Directions

Applying machine-learning analysis tools to uncover the dynamics of phonological processing

Research Question

Research Question

How is sub-phonemic information maintained when listening to continuous speech?

Collaborator

ME

JEAN-RÉMI KING

Setup

we take continuous speech, and annotate it for phoneme boundaries and phonetic information

- 24 participants
- 1 hour recording
- ~40,000 phonemes per participant

Setup

we take continuous speech, and annotate it for phoneme boundaries and phonetic information

- 24 participants
- 1 hour recording
- ~40,000 phonemes per participant

Decoding from the MEG Signal

Decoding from the MEG Signal

/b/ /f/ /m/

+bilabial + fricative + fricative + voice

Decoding from the MEG Signal

Decoding from the MEG Signal

Manner

Place

Voicing

 Phonetic features appear to elicit different temporal dynamics

 Phonetic features appear to elicit different temporal dynamics

And different spectral profiles

 Phonetic features appear to elicit different temporal dynamics

And different spectral profiles

 There is great utility in applying machinelearning analyses to spatiotemporally resolved MEG data

Finish Line

Finish Line

Completed Research:

- Sensitivity to phonological ambiguity is reflected in the very initial stages (~50 ms) of processing a speech sound
- Sub-phonemic information is maintained for long periods of time, and is reevoked at subsequent phoneme positions in the spoken word
- The system **commits to phonological interpretations** on a shorter time-scale in parallel to phonetic maintenance

Future Directions:

• Can we apply **machine-learning** analysis techniques to MEG data to unveil the dynamics with which sub-phonemic information is processed?

With big thanks to:

 My supervisors, Alec Marantz and David Poeppel, as well as everyone in the Neuroscience of Language Lab and Poeppel Lab!

Funding: G1001 Abu Dhabi Institute

Thank you!

Example Stimuli Pairs

potent	total
dwindle	twinkle
bubbly	publish
primal	triumph
direct	tirade
crash	grasp
democratic	temporary
chemically	temperature
commodity	tomorrow
badger	pageant
percolate	turkeys
crochet	grotesque

bazaar	position
choir	twilight
decades	technician
dreadlock	treadmill
delaware	telephone
capitalise	tapestries
curling	girlish
depositor	topography
balloon	pollute
caucuses	talkative
blunt	plunge
beneficial	penicillin

Reactivation in Intermediate Positions

Experiment 1: Design & Materials

Voice onset time (VOT) - {p-b, t-d, k-g}

Place of articulation (PoA) - {t-k, p-t}

Experiment 1: Design & Materials

Re-sampled the continuum to match perceptual categorisation

No Ambiguity Effect in Right Hemisphere

