Laura Gwilliams ${ }^{1,3}$, Tal Linzen ${ }^{1}$, Kyriaki Neophytou ${ }^{3}$, David Poeppel ${ }^{1,4}$ \& Alec Marantz ${ }^{1,2,3}$
New York University Psychology ${ }^{1}$ and Linguistics ${ }^{2}$ Department; NYU Abu Dhabi3; Max-Planck-Institute ${ }^{4}$

## Introduction

Speech is inherently noisy and ambiguous Comprehension fluency is achieved by integrating top-down information with bottom-up acoustic input
i) Sensitivity to phonological categories found $\sim 100$ ms after onset for unambiguous tokens, but not yet uncovered responses to ambiguous sounds
ii) Behavioural studies have used sensitivity to subphonemic variation to approximate the size of the integration window, with inconclusive results

How does the auditory system reflect and resolve phoneme ambiguity?

## Methods

## Experiment 1: Syllable Continua

- Extracted the first syllable from natural spoken words
- Eleven-step continua of syllables between two unambiguous end-points. Voice onset time (VOT): t-d, p-b, k-g; place of articulation (PoA): t-p, p-k
- 2AFC task: choice between two letters presented on-screen
- Neurophysiological responses of $\underline{24}$ participants measured concurrently with a 208 -channel KIT-MEG system


Experiment 2: Lexical Garden Paths

- Selected 5 continua steps of spoken words, based on the psychometric functions of Experiment 1
- 65 word pairs, with identical speech stream until divergence point (also see McMurray et al., 2009)
- Match/mismatch task: written words presented 500 ms after speech offset; $\underline{22 \text { participants' responses measured with MEG }}$



## Results: Time-locked to Syllable/Word Onset

1. Responses in left (but not right) Heschl's Gyrus are modulated by phoneme ambiguity $\sim 50 \mathrm{~ms}$ after onset 2. Sensitivity to PoA and VOT is bilateral at 100 ms . Replicated across syllable and word contexts.


Power spectra of first 20 ms of stimuli



Classifying phonemes from stimuli power spectra
Behavioural phoneme selection
can be accurately $(p<001)$ can be accurately ( $p<.001$ )
classified based on the first 20 classified based on the first 20
ms of the stimulus; accuracy decreases with ambiguity

Continuum steps cannot be decoded from the stimulus, suggesting that sensitivity to acoustic properties per se acoustic properties per se

## Results: Time-Locked to Point of Disambiguation (POD)

3. Ambiguity effect re-surfaces at $P O D$ regardless of latency.

4. Cohort activation is weighted by subphonemic detail until the system commits to a phoneme category $\sim 450 \mathrm{~ms}$.


## Conclusion

- Sensitivity to phoneme categories is apparent from $\sim 50 \mathrm{~ms}$ after onset: Tracks difficulty of classification and is not driven by acoustic properties
- If disambiguation comes too late ( $>450 \mathrm{~ms}$ after word onset), listeners preemptively commit to a phonological interpretation
- Subphonemic detail is maintained across long time-scales in Heschl's Gyrus; phonological commitment resolves earlier in superior temporal gyrus
- Acoustic-phonetic and phonological processing are independent and computed in parallel


## References

McMurray, B., Tanenhaus, M. K., \& Aslin, R. N. (2009). Within-category VOT affects recovery from "lexical" garden-paths: Evidence against phoneme-level inhibition. Journal of memory and language, $60(1), 65-91$.


