# جامعة نيويورك أبوظي **NYU ABU DHABI**

## Introduction

Magnetoencephalography (MEG) is particularly well suited to measuring evoked response components of visual word recognition. However, little is known about the nature of fundamental components relative to the cortical surface. Thus, typical methods of distributed source analysis may overgeneralise the spatial extent of these responses by combining the actual sources with source localisation "bleed" into neighbouring cortices.

We conducted a replication of Tarkiainen et al.'s (1999) experiment, which reported robust effects for two response components of interest: the Type I / M100 effect, indexed by greater activity with increased visual noise, and the Type II / M170 effect, indexed by a preference for visible over legible but noisier letter strings.

Tarkiainen et al. (ibid) employed single dipole modelling, which orients activity with respect to the head coordinate system. We used distributed source analysis of these responses by reconstructing sources of activity with respect to the cortical surface. We aim to distinguish accurate sources from reconstruction "bleed" into neighbouring cortices, and test whether response components are generated by cortical currents orientated into, as opposed to out of the cortex.

## Aims

- 1) Are Tarkiainen et al.'s results replicated when using a cortically constrained distributed source analysis?
- 2) What is the directionality of Type I and Type II responses with respect to the cortex?

## Materials and Methods

- 16 right-handed native English speakers
- Continuous MEG data acquired during experimental session
- 208 sensor array
- 50 trials per condition (per cell in design below)
- English-adapted stimuli from Tarkiainen et al., 1999 Task: Focus on stimuli and name aloud when presented with "?"



# **Revealing the cortical dynamics of letter string perception.**

Laura Gwilliams<sup>1</sup> Gwyneth Lewis<sup>2</sup> and Alec Marantz<sup>1,2</sup> NYUAD Institute<sup>1</sup>; New York Univeristy<sup>2</sup>



- Nonparametric statistical test
- Calculated over time and space
- Cluster formation restricted temporal lobe for Type II



### **References:**

Tarkiainen, A., Helenius, P., Hansen, P. C., Cornelissen, P. L., & Salmelin, R. (1999). Brain, 122(11), 2119-2132. NSF Grant BCS-1221723 (A.M.) Cohen, L., Dehaene, S., Naccache, L., Lehéricy, S., Dehaene-Lambertz, G., Hénaff, M. A., & Michel, F. (2000) Brain, 123(2), 291-307. NYU-Abu Dhabi Institute Grant G1001 (A.M.) Maris, E., & Oostenveld, R. (2007). Journal of neuroscience methods, 164(1), 177-190.

Data processed in mne-python using "fixed" orientation (signed respect to cortex) Anatomical ROI's (above) selected from Tarkiainen et al.'s results

| Cluster Perm                                                                                                           | utation Analy                                                                                          |
|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| ting (see Maris and Oostenveld, 2007)<br>ce, corrected for multiple comparisons<br>to the visual cortex for Type I and | <ul> <li>Minimum size of clu</li> <li>Threshold for formi</li> <li>**Blue clusters refer to</li> </ul> |
|                                                                                                                        |                                                                                                        |

Location of Clusters Cuneus Lateral-Occipital 0 = .008

Time window 80:130ms

 $\bullet$ 





Conclusions

Distributed source analysis replicated Tarkiainen et al.'s results

Cortical currents appear to be oriented *into* the cortex (negative)

Results motivate using source reconstructions that fix direction of sources orthogonal to the surface and analysing only *negative* sources for estimates of these responses



### **Contact:** laura.gwilliams@nyu.edu

## Functional ROI Comparison

### • **Type I**: robust effect in lingual gyrus



### • **Type II**: robust effect in **fusiform gyrus** (VFWA coordinates: Cohen et al., (2000)



p = .008p = .3

 Results gathered from 2 x 3, noise vs. stimulus-type ANOVA

### 'ses

usters = 10 sources ing clusters, *p* < 0.1

to negative activity, i.e., current oriented into the cortex\*\*

