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Perceptual decision making unfolds in a processing cascade

Laura Gwilliams'?, Jean-Rémi King?
New York University!; NYU Abu Dhabi?; Frankfurt Institute for Advance Studies?

« Transforming environmental input (e.g. a pixelated
screen) into a stable percept (e.g. recognising one’s
friend) is a process of perceptual decision making

+ Neural activity ramps up in proportion to the
evidence in favour of the ultimate selection, fed
from the output of lower-level sensory regions'2

+ This previous evidence primarily comes from single-
unit recordings in monkeys, which does not provide
insight into the macro-level architecture

+ Here we probe the computations and
representations utilised across the whole human
brain, and compare these to a pre-trained deep
neural network optimised for image captioning

What neural architecture underlies
perceptual decision making?
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Rb Neural Network

© « Same stimuli input into pre-trained DNN VGG19°

« Activity in each layer projected into 306-dimensional
space (equivalent to the MEG sensors)

: » 17 random projections used, mirroring the
. distribution over subjects

VGG19 Architecture

282 x 142x 72x
512 512 512
) 1 x 4096

Convolution + RelU
Max pooling

Fully connected + ReLU

3 Analysis

* MVPA applied at each millisecond ( t) across the
306 sensors ( s) for each epoch (e)

* Decoding scores computed within subjects/
projections, and then tested for significance across

subjects with cluster-corrected statistics (p < .05)
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Hierarchy of representations

: 1« Features of the stimulus are decodable in a cascade:

sequentially activated and maintained in parallel.

* Each feature is supported by a different brain region
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The architecture permits continuous

feedback to/from all computations

i * The brain processes sensory features via multiple
parallel cascades

: » Neural activity moves across and within brain
regions to support each stimulus feature
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NYU within and across brain regions

DNN architecture is similar

i1 o« Decoding stimulus features DNN activity revealed :

a cascade pattern, and similar decoding accuracy
obtained on the human MEG data
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i1« Suggests that: the cascade architecture is a robust :

computational strategy, common to both the
biological and the artificial visual system

DNN representation is different

: . . . i« Letters and digits are separable from activity in the
: » Neural responses first modulated relative to stimulus ::

last layer (89%); however, representations are not
linearly or categorical, unlike the human observer
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* Both biological and artificial

neural networks converge on a
cascade architecture

« The DNN represents information

differently from the human brain !

* Activation patterns evolve

within and across brain regions

i » The brain processes stimulus

features in multiple parallel

i hierarchical cascades
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