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Conclusion 

Perceptual decision making unfolds in a processing cascade 
within and across brain regions
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Introduction
• Transforming environmental input (e.g. a pixelated 

screen) into a stable percept (e.g. recognising one’s 
friend) is a process of perceptual decision making  

• Neural activity ramps up in proportion to the 
evidence in favour of the ultimate selection, fed 
from the output of lower-level sensory regions1,2 

• This previous evidence primarily comes from single-
unit recordings in monkeys, which does not provide 
insight into the macro-level architecture 

• Here we probe the computations and 
representations utilised across the whole human 
brain, and compare these to a pre-trained deep 
neural network optimised for image captioning

Human Brain1

Experimental Design2a
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What neural architecture underlies 
perceptual decision making?

• 17 participants  

• letter/digit discrimination 

• 306-channel MEG 

• 1960 trials 

• Stimuli designed to be 
orthogonal on six 
variables of interest

Neural Network 2b

• Same stimuli input into pre-trained DNN VGG193 

• Activity in each layer projected into 306-dimensional 
space (equivalent to the MEG sensors) 

• 17 random projections used, mirroring the 
distribution over subjects

Neural Network5
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• Features of the stimulus are decodable in a cascade: 
sequentially activated and maintained in parallel. 

• Each feature is supported by a different brain region

• Neural responses first modulated relative to stimulus 
evidence, then match subjective experience

• The brain processes sensory features via multiple 
parallel cascades 

• Neural activity moves across and within brain 
regions to support each stimulus feature

• Decoding stimulus features DNN activity revealed 
a cascade pattern, and similar decoding accuracy 
obtained on the human MEG data

• Letters and digits are separable from activity in the 
last layer (89%); however, representations are not 
linearly or categorical, unlike the human observer
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• Both biological and artificial 
neural networks converge on a 
cascade architecture 

• The DNN represents information 
differently from the human brain 

• Activation patterns evolve 
within and across brain regions 

• The brain processes stimulus 
features in multiple parallel 
hierarchical cascades

Analysis3

• MVPA applied at each millisecond ( t ) across the 
306 sensors ( s ) for each epoch ( e ) 

• Decoding scores computed within subjects/
projections, and then tested for significance across 
subjects with cluster-corrected statistics (p < .05) 

• Suggests that: the system continuously feeds the 
output of lower-level computations to higher stages

• Suggests that: the cascade architecture is a robust 
computational strategy, common to both the 
biological and the artificial visual system

The architecture permits continuous 
feedback to/from all computations

Sensory evidences accumulates to 
categorical decision

DNN representation is different

Hierarchy of representations DNN architecture is similar

VGG19 Architecture
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