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Abstract

Humans understand speech with such speed and accuracy, it belies the complexity of transforming

sound into meaning. This paper offers an overview of electrophysiology studies that examine neural

responses during speech processing, and schematic processing model which synthesises the results into

candidate neural computations and representations. The results offer evidence that inputs are rapidly

discretised into multiple formats of representation; those representations are maintained throughout

the word, and updates are made based on subsequent inputs; phonetic encoding re-configures across

space as the word unfolds in order to encode content and order; this dynamic phonetic sequence is

used to recognise stored morphological constituents from the input. Overall, the work showcased

in this overview demonstrate the utility of combining theoretical linguistics, machine-learning and

neuroscience for developing a theoretically grounded, biologically constrained and computationally

explicit account of how the human brain achieves the feat of language comprehension.
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1 Introduction

Listening to someone talk typically feels like effortless and automatic understanding. With little conscious

effort in commanding our mind to comply, an interlocutor can provide information, evoke emotion,

or exchange social pleasantries. Despite the ease with which hearing humans verbally communicate,

the process of transforming human-articulated sounds into an infinite possibility of novel and complex

meanings – i.e., speech comprehension – is a computationally intricate, and currently unsolved, challenge.

What computational solution does the brain implement to overcome this challenge? This is the

big question that guides my research. In this article, I will provide an overview of studies which con-

tribute to delineating the processing architecture upholding speech comprehension in terms of what

representations the brain generates from the auditory signal, and what computations are applied to

those representations during the timecourse of processing. Describing these components of the human

processing architecture is key to understanding auditory, speech, and language processing, which, I be-

lieve, require complementary insight from linguistics, machine learning and neuroscience in order to be

successful.

What neural measurements are best suited to answering these questions? Currently, the majority of

neurolinguistic studies have utilised technologies that record activity from large populations of neurons,

either non-invasively using techniques such as functional magnetic resonance imaging (fMRI), magneto-

encephalography (MEG), and electro-encephalography (EEG), or invasively using electro-corticography

(ECoG). Such methods pool activity across tens to hundreds-of-thousands of neurons, both within and

across putative cortical columns. This means that the recorded neural activity is the summation of

multiple, functionally distinct, overlapping neural responses. One major challenge is being able to

appropriately decompose the dynamic multiplex neural signals obtained from these neural recording

technologies into their functional axes, and in turn, associate those axes with an interpretable sequence

of operations (King et al., 2020). My work develops and utilises machine learning algorithms to achieve

this analytical goal.

The processing of speech signals poses an additional challenge: the speech signal evolves rapidly

over time and conveys information across various overlapping timescales. In addition, neural responses

evolve rapidly over time (Gwilliams et al., 2022a), both in terms of amplitude at a single location and

propagation of activity across the brain. Time-resolved neural recording techniques such as MEG, EEG

and ECoG are well suited to capturing this dynamic signal, due to the high sample rates with which

they can record brain responses, and their extensive spatial coverage - the entire brain in the case of

non-invasive methods, and multiple square-centimetres of cortex in the case of invasive methods. Thus,

the rich spatio-temporal dimensionality of these data provide the opportunity to disentangle and track

the multiple overlapping neural processes that unfold in parallel during speech comprehension, and in

turn link those processes with associated computations and representations. In this brief review, we will
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focus on studies that employ such time-resolved methodologies.

Figure 1 offers a schematic model of some of the computations the brain implements (coloured boxes),

and representations it generates (bold text), in order to achieve speech comprehension. I focus on neural

operations that reside close to the input, serving as the lower level processes which transform the auditory

signal into linguistically interpretable sequences. I organise this article into sections, whereby each section

corresponds to a sub-component of this schematic processing model. I will provide evidence in favour of

each stage and conclude by offering promising next steps to further specify and broaden this model.

Figure 1: Schematic processing architecture. Processing stages are labelled in terms of the rep-
resentational format they generate (bold font, above) and their putative location of processing (HG =
Heschl’s Gyrus; STG = Superior temporal gyrus; MTG = Middle temporal gyrus). The example shows
the processing of the first three phonemes of the word ‘parakeet’.

2 From continuous to discrete

The speech signal, as it reaches auditory cortex from the auditory pathway, is continuous and continuously

varying (Ades and Brookhart, 1950). Yet, a listener’s perception of a speech utterance is categorical

and discrete; organised in terms of phonemes, syllables and words (Marslen-Wilson and Warren, 1994)

rather than the spectro-temporal modulations that may be not just orthogonal to, but also a perilous

distraction from (Maye et al., 2008, Tsao et al., 2004), the intended meaning of the speaker. One critical

breakthrough for understanding speech comprehension processes has been in identifying the discrete

format by which speech sounds are represented by neural populations.
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What are the candidates for this discretised representation? Looking to linguistic theory and ac-

companying psycho-linguistic research provides us with some candidate hypotheses, most pertinently

phoneme categories and phonetic features (Ali et al., 1999, Cole, 1973, Marslen-Wilson and Warren,

1994).

Phonemes are the minimal speech unit which, if replaced with a different phoneme, transform the

word into a different lexical item (e.g., /bat/ versus /pat/ versus /mat/) (Chomsky and Halle, 1968). If

phoneme categories were the underlying representation of speech sounds, this would entail a ‘one-hot’

encoding of each sound, whereby neural populations are tuned to a single phoneme category, firing in

response to that phoneme category and otherwise remaining silent.

Phonetic features correspond to properties shared by groups of phoneme categories, which relate

to how the speech sound is articulated by the speaker (Liberman and Mattingly, 1985). This spans

different dimensions of articulation, such as how the tongue, teeth and lips are positioned in the mouth

to generate the sound (place of articulation), how air is allowed to pass through the mouth as the sound

is made (manner of articulation) and whether the vocal chords vibrate during the initial articulation of

the sound, or not (voicing/phonation). If phonetic features were the underlying neural representation of

speech sounds, neural populations would respond to the collection of phonemes which share a phonetic

feature – e.g., all of the fricative manner of articulation phonemes such as /s/, /sh/, /f/. In this sense,

the phoneme category would be discernible only from the responses across multiple neural populations,

and would not be the ‘primitive’ representation of neural encoding per se.

Here I would like to make clear what I mean by a speech unit versus a speech format. When I refer to

speech units, I refer to the size of the speech sound chunk under scrutiny. For example, phonemes and

syllables correspond to different speech units. When I refer to speech format, I refer to the way by which

the different realisations of speech units are organised – in the stimulus and, by hypothesis, also in the

brain. For example, phoneme categories and phonetic features correspond to different representational

formats of the same speech unit.

In a flagship study by Mesgarani and colleagues (Mesgarani et al., 2014), high-density ECoG was

used to record auditory responses from participants listening to isolated sentences. The goal was to test

whether neural population responses to speech sounds are organised relative to phoneme categories or

phonetic features. They analysed responses to each speech sound, for each electrode separately, along

the superior temporal gyrus (STG). The results demonstrated that, at a latency of 100-150 ms after

speech sound onset, neural populations as recorded from an individual electrode site responded to the

groups of speech sounds that share phonetic features, rather than individual phoneme categories.

A similar finding using EEG was published in 2015 from Di Liberto and colleagues (Di Liberto et al.,

2015). They compared different representational spaces, including spectrogram, phoneme model and

phonetic feature models, and found that the phonetic feature model best explained the non-invasive
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scalp recordings. Model weights similarly peaked around 100-150 ms after sound onset, suggesting that

the neural sources may also originate from STG.

These two results support that relatively early cortical responses encode the phonetic content of

the incoming speech signal, and that binary phonetic features better explain the organisation of these

responses than the continuous phoneme categories. The claim, therefore, is that the brain quickly

discretises the continuous speech signal into discrete phonetic features for subsequent analysis. This

prior body of work forms the empirical bases for the computational stages I explore in the upcoming

sections, and is the motivation for choosing phonetic representational bases in Figure 1.

3 Discretisation in the face of ambiguity

In real world speech, the sensory signal is often ambiguous as to the phonetic features it contains. This

may be due to the particular way in which the speaker articulated the sound, or because of external sen-

sory signal masking the target speech input. How does the brain decide upon a categorical discretisation

when the input itself is consistent with more than one category?

In Gwilliams et al. (2018) (Experiment 1), we investigated how the early 100-150 ms STG response

described above encodes speech sounds that vary on a continuum from one phoneme category to another,

by varying a single phonetic feature (e.g., /ba/ ←→ /pa/). Will responses track the sub-categorical

variation present in the speech stimulus, or will it reflect just the most likely category that aligns with

the listener’s categorical percept?

Participants listened to syllables that we morphed along an 11-step linear continuum from one

phoneme category to another, and performed a two-alternative forced choice decision on each sound

they heard, between the two most likely competitors (e.g. /ba/ or /pa/ ?). While participants per-

formed the task, we recorded whole-head MEG, and performed source localisation to allow us to apply

our analyses within particular brain regions. Our results showed that neural sources in STG exhibited a

summation of both linear sub-categorical responses, in addition to categorical responses that predicted

their behavioural report. Both encoding formats of the phonetic input were present at a latency of 100-

150 ms after speech sound onset. This result suggests that the brain derives both a linear veridical and

a categorical discretisation of the input in parallel, permitting the system access to both formats upon

which to derive subsequent perceptual decisions. This aspect of processing is presented in the blue panels

of Figure 1, showing that the signal of each phoneme is transformed into a subphonetic and phonetic

format in the auditory cortex. This demonstrates that, while the representations extracted from the

sensory signals are discrete in time, they are not solely representationally discrete. They are contained

both as a probabilistic sub-phonetic (linear) and a rectified-probabilistic (categorical) code.

Is multiplex extraction of properties from ambiguous sensory inputs specific to speech processing,
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or is it also found in other domains and modalities? To further our investigation of the processing of

ambiguous inputs, in (Gwilliams and King, 2020) we presented participants with visual symbols that were

generated along a continuum between letters and digits. The symbols were designed to contain a number

of orthogonal properties. Of particular relevance here is the manipulation of ambiguity, perceptual

evidence in favour of a letter or digit category, and eventual categorical behavioural report. When fitting

decoding models on the neural responses recorded with MEG, we found that all three properties were

simultaneously encoded in neural responses, and maintained in parallel until the behavioural response.

This result puts forward the interesting postulation that, across modalities and cognitive domains,

the sensory system simultaneously extracts a rich set of properties, in different formats, from the in-

put. Why generate highly redundant representations of the same information? Because certain formats

of representation emphasise particular components of the input and de-emphasise others (Marr, 1980),

making them better suited to performing different tasks. For example, a linear representation empha-

sises the relative similarity between different inputs; a representation of ambiguity emphasises distance

from canonical examples at categorical endpoints. For the task of categorising speech stimuli, a use-

ful representation is one that emphasises inputs that are most similar to categorical endpoints, while

de-emphasising variation within the category. In all, having access to multiple representations allows

the brain to flexibly use the formats which are best suited to a particular neural process or behavioural

outcome, without having to further transform representations each time it is faced with a different task.

4 Revising discrete percepts

Of course, in the studies above, we are recording neural activity from our participants while they have a

very artificial experience: hearing isolated syllables and providing a perceptual report via button press

(Hamilton and Huth, 2020). In natural speech, listeners are provided not only with ambiguous inputs, but

also with a rich and informative context that can be used to guide processing of the sensory signal towards

the correct interpretation (Davis and Johnsrude, 2007, Sohoglu et al., 2012). Furthermore, a listener’s

perceptual reports are typically an implicit component of understanding the speech input, whereas here

we require an explicit play-by-play of what they perceive at each given moment. In these next set of

studies we wanted to examine speech processing in a more naturalistic way, in order to understand

how surrounding context serves to aid the processing of ambiguous or acoustically compromised speech

sounds.

When an ambiguous sound is placed in a word at the end of a biasing sentence fragment such as ‘The

state governors met with their respective ...’, upon hearing the word ‘legi#latures’, where the # indicates

the replacement of a speech sound with white noise, listeners perceive to hear the missing sound, and

temporally mis-locate when the noise burst occurred. This was the observation of Warren (1970), which
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he referred to as the ‘perceptual restoration effect’. This impressive example of top-down influence was

later replicated and extended by others (Samuel, 1981), showing it to be a robust perceptual effect.

The neural underpinnings of this process were investigated with an elegant study by Leonard et al.

(2016). They presented participants with perceptually ambiguous words such as ‘fa#tr’ where one of the

phonemes were replaced with a noise burst. They asked participants whether they perceived hearing the

word ‘factor’ or ‘faster’. By using the high gamma neural responses within STG, as recorded with ECoG,

the authors found that the single trial neural responses to an identical sensory input was significantly

different depending on whether the individual perceived a ‘s’ or ‘k’. The result persisted both when

presenting the words in isolation, and when embedding the word at the end of a biasing carrier sentence.

Furthermore, the pattern of neural responses was similar to the sensory response evoked by hearing the

original unmasked versions of the lexical stimuli. This result suggests that, when a listener perceptually

restores an absent speech sound, neural ensembles emulate the pattern of activity that is typically

associated with the sound to be ‘filled-in’. From the brain’s perspective, then, the pattern of activity

across STG resembles that of an unabridged sensory sequence. The listener’s experience appears to be

based upon the sequential neural patterns in STG, gaps in which have been sufficiently repaired during

processing to yield a complete percept.

An important extension of this prior work is to consider the fact that relevant information about

speech sound identity not only precedes a sound under scrutiny, but can also succeed it. For example,

imagine a sentence such as ‘When the #ent was repaired in the truck’, versus ‘When the #ent was

repaired in the park’ where now the # corresponds to a sound that is ambiguous between /t/ and

/d/. The first sentence biases listeners to perceive the ambiguous sound as /d/, in order to create

the semantically congruent word ‘dent’, whereas the latter biases perception towards /t/ to create the

word ‘tent’ (Connine et al., 1991). Connine and colleague conducted a series of behavioural studies

using sentences such as the examples provided above, in order to show that perception can be based

retroactively – based on information which comes after the sensory signal to be interpreted.

Remarkably, it has been found that perceptual reports of an ambiguous sound are affected by infor-

mation that arrives up to several seconds after the sound of interest (Christiansen and Chater, 2016,

Levy et al., 2009, McMurray et al., 2009), which suggests that the percept of a listener remains malleable

for an extended period of time. In Gwilliams et al. (2018) (Experiment 2), we investigated the neural

computations which make this retroactive update possible.

Twenty five participants were recruited to listen to phonetically manipulated words while whole-head

MEG was recorded. The logic underlying our experimental design is that, if a sound is ambiguous

between a /b/ and /p/, but then the word resolves as /?arakeet/, the only interpretation of the onset

phoneme that would result in an existent word of English is /p/ (Figure 2).

We selected 53 word pairs where, other than the first phoneme, the phoneme sequence was identical
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Figure 2: Stimuli examples. An example word pair stimulus from (Gwilliams et al., 2018). The two
words ‘barricade’ and ’parakeet’ contain an identical phoneme sequence until point of disambiguation
(‘ai’ and ‘i:’), and which point, not only is the identity of the word revealed, but also the identity of the
ambiguous onset phoneme.

until a disambiguation point, which occurred between 3-7 phonemes after word onset across word pairs.

At this critical point, entropy over possible continuations of the word resolved to zero. In other words,

upon hearing the ‘ee’ in ‘#arakeet’, the only word consistent with that sequence of phonemes is ‘parakeet’.

Simultaneous to revealing word identity at disambiguation point, the identity of the onset phoneme is also

disambiguated: given a phoneme sequence ‘#arakeet’, the only phoneme that could be placed at onset

in order to create a valid word of English is ‘p’. So, at this disambiguation point, not only is the identity

of the word revealed, but the identity of the onset phoneme /p/, is also retroactively disambiguated.

We morphed the onset of the word pairs along a 5-step perceptual continuum, whereby in absence of

biasing context, participants’ average categorisation of the sounds was at 95%, 75%, 50%, 25% and 5%, in

a two-class decision paradigm. We then modelled the neural responses in STG to each phoneme in these

words as a function of (i) most likely phoneme category given the acoustic input, (ii) the probabilistic

phonetic detail, and (iii) the extent of sensory ambiguity. We found that all three types of representation

of the onset speech sound were encoded at the onset of each subsequent sound in the word. Concretely,

we could read out the phonetic content and the extent of ambiguity experienced at word onset throughout

the duration of the word. This information was encoded in neural responses up to at least 750 ms after

sound onset (the longest delay that we tested), and remained locally encoded with the same set of neural

sources in STG throughout the duration of the word.

This result suggests that the brain maintains the phonetic detail of previously heard speech sounds

over time, and updates those phonetic representations based upon the subsequent speech signals it

receives. In Gwilliams et al. (2017) (Gwilliams et al., 2017), we explicitly tested this hypothesis by

modelling neural responses in the same dataset as a function of (i) probabilistic phonetic detail of the

onset phoneme, (ii) probabilistic phonetic categorisation of the onset phoneme given the subsequent

sounds of the sequence. We used a Bayesian modelling approach, which allowed us to test the relative

contribution of each feature throughout the sequence. Our results demonstrated that neural responses

in STG at a 100-150 ms latency are best predicted using a weighted combination of sensory evidence and
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lexical evidence in favour of a phonetic categorisation, which suggests that the brain permits retroactive

modification of phonetic percepts based upon subsequent inputs.

How does the brain decides upon a categorical discretisation when the input is consistent with multiple

categories? We find that the brain both selects the most likely categorisation given the sensory evidence,

and maintains a sub-categorical representation of the input for a very long period of time, which can

be influenced by the subsequent content that is received. In this way, the percept of the listener is

able to benefit from preceding and subsequent information, at both the sensory and lexical levels, to

derive comprehension. To visualise these aspects of processing, we added recurrence arrows to the sub-

phonetic and phonetic properties of the speech sounds in Figure 1. This indicates that the properties

of speech sounds are maintained for a long period of time, within the same neural sources. We also

include red feedback arrows from the higher order structures (morphemes, word class), to show that

higher order information can serve to influence the maintenance of phonetic information. These feedback

connections allows the system to resolve sensory ambiguity (Gwilliams et al., 2018), and even fill in

sensory information when the sound is absent from the speech signal entirely (Leonard et al., 2016).

5 Overlapping computations

While the neural longevity of speech sound representations has clear advantages to the processing sys-

tem in terms of accuracy of eventual percepts, it also comes with the consequence that speech sound

information is processed for much longer than the duration of the speech sound unit itself. Concretely,

the average duration of a phoneme in continuous speech is around 80 ms; however, our work suggests

that the properties of that sound are processed for over half a second. This means that, inevitably, the

brain is processing the content of multiple phonemes at the same time.

A similar observation was made in a previous EEG study, which recorded neural responses to con-

tinuous speech (Khalighinejad et al., 2017). In their study, phonetic detail could be discerned from the

speech signal for around 100 ms, whereas it could be read out from neural responses for around 400

ms. This supports our notion that in continuous speech, the properties of multiple speech sounds are

processed simultaneously.

This intriguing observation raises two important questions. First, how does the brain process proper-

ties of multiple speech sounds at the same time, without confusing the identity of those speech sounds?

For example, if three unique phonemes have been heard, each with their own set of phonetic features, how

are the features assigned to the correct phoneme position, without substitutions, which would generate

incorrect phoneme sequences. Second, how does the brain recall the order of each speech sound in the

sequence? In order to correctly recognise what words a person is saying, the processing system needs to

accurately represent both the content and the order of the sounds – the content is what distinguishes
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/pat/ from /bat/ and the order is what distinguishes /pat/ from /tap/.

In order to address these questions, we recorded whole-head MEG while participants listened to

naturalistic continuous speech (Gwilliams et al., 2022a). We annotated each phoneme (around 40,000

per participant) for its phonetic content and location in the word. We then trained a series of decoders

to discriminate between different phonetic features, as a function phoneme position, and as a function of

the amount of time elapsed since phoneme onset. The critical question was whether a successful decoder

trained to discriminate features of the target phoneme (featurestarget) on activity during the target

phoneme (braintarget) contained information in the same or different activity pattern from a decoder

trained on activity at each subsequent millisecond over time (braintarget+N ). In other words, for the

duration of phonetic feature processing (e.g., 400 ms), does the brain represent that phonetic detail under

the same neural ensemble over time, or do the neural ensembles evolve over the course of processing?

Our results show that, with each subsequent phoneme that enters into the ear, the neural pattern

which encodes the phonetic information of a target phoneme assumes a different spatial configuration.

For example, phonemex is initially encoded within patternA, which then evolves to patternB , then to

patternC , as each of the subsequent phonemes are received. We found that this movement of information

over space occurred locally within STG, rather than a global transposition from auditory to frontal areas.

We also found that the movement of activity is systematic, such that the amount of time elapsed since

the onset of the speech sound can be reconstructed from the MEG topography at a given time step.

In all, these results suggest that, indeed, the brain processes the properties of speech sounds for an

extended period of time – for much longer than the duration of the speech sound itself. And, indeed,

this results in the processing of multiple speech sounds at the same time. Here we uncover that parallel

processing of speech sounds is made possible by moving the information across space over time, such

that any given neural ensemble is not tasked with processing the phonetic content of multiple sounds

simultaneously, which avoids errors in read-out of the phoneme identity of speech sounds. In addition,

the systematicity of this passage of information permits access to the amount of time elapsed since sound

onset, and therefore the relative order with which the sounds occurred in the sequence. Together, this

permits the brain with a running N-gram representation of the most recently heard speech sounds, with

which the lexical identity of the speech sounds can be uncovered.

These findings are represented in Figure 1 as the ‘phonetic sequence’ processor, which receives in-

formation about each incoming phoneme and passes it through a set path of neural populations over

time.
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6 Using speech sounds to access stored units

The series of studies that I have over-viewed provide a candidate set of neural computations the brain

applies in order to discretise the continuous input into phonetic properties, resolve ambiguity in that

discretisation, and faithfully represent the recent history of the phonetic sequence. Of course, there is a

higher goal to all of these processes, which is to use this phonetic sequence representation to recognise

and understand what the person is saying. In this final empirical section, I turn to research which has

investigated how the speech input is used to recognise higher order structures, such as morphemes and

words.

A morpheme is considered the smallest unit of standalone meaning, be it functional or semantic in

nature. For instance, the item ‘disappears’ contains three morphemes: the prefix ‘dis-’, which has a

negating function; the root ‘appear’, which contains the core meaning of the word, and the inflectional

suffix ‘-s’ which provides grammatical functional information about the verb (Gwilliams, 2020). The

morphological unit is well characterised and understood in linguistic theory (Marantz, 1997, 2013), and

has a great deal of precedence in terms of its psychological reality (Schreuder and Baayen, 1995, Taft,

1994).

As is true for much of language research, the majority of studies investigating which of these rep-

resentations are encoded in neural responses have primarily investigated the case of visual processing

during reading (Friederici, 2011). In such reading studies, results support that the brain uses systematic

cues in orthographic structure, such as N-gram frequency and transition probabilities, in order to parse

the input into morphological constituents (Longtin and Meunier, 2005, Rastle and Davis, 2008, Taft,

2004). Those constituents are then re-combined under morpho-syntactic rules to generate the meaning

of the lexical item (Fruchter and Marantz, 2015). In this way, the primary unit of recognition is the

morpheme, and the lexical item is the output of online combinatorics.

For speech processing, however, the information is not presented instantaneously to the sensory

system. Rather, inputs are received gradually over time, as the signal unfolds (Gwilliams, 2020). Because

of this, the brain cannot use the same processing strategy to parse written input as it can auditory inputs

because, of course, instantaneous co-occurrence cues do not exist. This also poses analytical challenges,

because it is unknown beforehand when a neural process of interest will occur relative to what unit or

property in the speech signal.

One method to investigate how auditory sensory inputs relate to higher order linguistic structure

is to model neural responses under an information theoretic framework (Gwilliams and Davis, 2022).

Under this approach, the responses to each individual phoneme in speech can be modelled as a function

of the information it provides about the resulting higher order unit, such as morpheme identity or word

identity. The two metrics that are of particular relevance are surprisal and entropy.

Phoneme surprisal corresponds to how likely a particular speech sound is to occur, conditional upon a
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set of preceding speech sounds. Surprisal is measured in bits, and it can be interpreted as how informative

a particular sound is – an unpredictable sound carries more information than a highly predictable sound

(Lesne, 2014). Lexical entropy corresponds to the extent of statistical certainty about the lexical outcome

of a phoneme sequence. If only one word is possible given the sequence of phonemes thus far (e.g.,

‘parakee-’), certainty about the lexical outcome is high, and so entropy over possible outcomes is low.

Whereas if multiple words are possible given a phoneme sequence (e.g., ‘para-’), the lexical outcome

is less certain, and so entropy is higher. This ‘entropy zero’ moment has also been referred to as the

uniqueness point of the word (Gaskell and Marslen-Wilson, 1997, Luce, 1986).

A number of studies have shown that neural populations in STG at a latency of around 100-150 ms

are sensitive to the surprisal and entropy of incoming speech sounds (Brodbeck et al., 2018, Gagnepain

et al., 2012, Gwilliams and Davis, 2022, Gwilliams et al., 2017). The interpretation of this finding is that,

as the speech sound is received, the brain is computing which sounds are likely to come next, in order

to recognise what words are being said. If an unexpected sound occurs, this leads to a neural prediction

error response (Sohoglu and Davis, 2016).

To investigate what higher order units the brain recognises from the speech input, we used Arabic as

a test case (Gwilliams and Marantz, 2015). Arabic has an interesting morphological structure, because

the morphemes combine in an interleaved fashion, rather than the concatenative structure found in

languages such as English. For example, the Arabic word kataba comprises the root morpheme [k-

t-b], which contains semantic information, and the pattern [-a-a-a], which contains morpho-syntactic

information (see Figure 3). We tested whether, for native speakers of Arabic, their neural predictions

about upcoming sounds is based on the preceding speech sounds of the morphological constituent (e.g.,

[k-t-b]), or the preceding speech sounds of all sounds in the word (e.g., [kataba]). The logic is that, if

the morphological constituent is the target representation of the speech processing system, predictions

of upcoming sounds should be based on the phonemes present in the morpheme, despite the fact that

those phonemes do not occur in a linear uninterrupted sequence.

Figure 3: Morphological structure and phoneme predictions of an example stimulus Arabic
word. Arabic words contain both a root morpheme (pink) and a pattern morpheme (purple). Here
we show the order of phoneme sequence predictions under a morphological target (pink arrows), and a
lexical target (black arrows).
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We used MEG to record neural activity while the participants made lexical decisions on CVCVCV

(C=consonant, V=vowel) Arabic nouns. We orthogonalised the predictability of the final consonant of

the items based on the preceding consonants only (the root morpheme) and based on all preceding sounds

(the whole word), and modelled responses as a function of these two types of predictability. Overall, our

results show that the brain is sensitive to the likelihood of a speech sound under a morphological regime

earlier and stronger than it is sensitive to the likelihood under a lexical regime. This suggests that the

brain first uses the speech signal to recognise morphological constituents, and later recognises the full

lexical item which those constituents create.

In order to represent these findings in Figure 1, we add the ‘morphological candidates’ column in

purple. The idea is that, as the phonetic sequence develops over time, it is used to activate different

possible morphological units. These units are the format by which words are stored in memory, in terms of

their semantic and morpho-syntactic properties (Gwilliams, 2020). The transition between the phonetic

sequence to morpheme candidates implicates a second transition: from representations generated in real

time to those which have been stored through language learning. It is at this transition stage that we

would expect effects of language proficiency, for example, to play a particularly crucial role.

7 Future Directions

Overall, the results of the studies outlined here provide insight into some of the computations the brain

implements, and representations it generates, in order to transform the auditory signal of speech into

an interpretable sequence of lexical items. A picture emerges whereby the inputs are rapidly discretised

into multiple formats of representation; those representations are maintained throughout the word, and

updates are made based on subsequent inputs; phonetic encoding re-configures across space as the word

unfolds in order to encode content and order; this dynamic phonetic sequence is used to recognise stored

morphological constituents from the input.

While this is an informative set of operations, there remains much to be delineated. Of particular

priority is furthering our understanding of how higher order structure, such as grammatical relations and

semantic content, is derived from the speech input, and in what format it is represented. In Figure 1,

I have included a processing stage whereby word class (e.g., noun, verb, adjective) is derived from the

morphological candidates in the feedforward pass of information, and from the syntactic structure in a

feedback pass. I see word class as a potentially crucial level of representation, because it has the ability

to act as a intermediary state to transform information between a sensory phonetic sequence and into an

abstract syntactic structure. There is much precedence for the psychological reality of word class, both

from imaging studies of healthy adults (Berlingeri et al., 2008, Moseley and Pulvermüller, 2014, Sahin

et al., 2006) and from aphasia studies of individuals with acquired language disorders (Caramazza et al.,
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1981, Hillis et al., 2004). It is also closely linked with the theorised representation of morphemes and

associated morpho-syntactic structure (Gwilliams, 2020, Marantz, 1997).

In a recent study, we investigated the processing of word class in participants listening to stories

while MEG was recorded (Gwilliams et al., 2022b). We used decoding analyses to investigate whether

word class was generated from the syntactic structure (feedback) or from the phonetic sequence (feed-

forward), when words occurred in contexts that biased interpretations in either direction. We found

that, first of all, word class was decodable from neural responses for multiple seconds – spilling over

into the processing of subsequent words. Second, in cases where the sentence structure and phonetic

sequence provide contradictory predictions, the feedback sentence-level interpretation bore out. This

finding suggests that, similar to how lexical information guides sensory processing through prolonged

representational maintenance (Gwilliams et al., 2017, 2018), sentence structure also guides lexical pro-

cessing. An important next step will be to assess whether the feedback-through-maintenance process

is a common computational strategy that is recycled across multiple domains of language processing,

perhaps also extending into other cognitive domains.

Accounting for higher level structures also implicates accounting for information that operates over

speech units of a much larger size, and therefore over a much longer timescale. Whereas the representa-

tions of lower level units like phonemes can be derived with relatively few time samples from the input,

properties of the sentence structure such as long-distance dependencies or WH-movement requires ac-

cumulating information over long timescales, and integrating that information non-adjacently (Newport

and Aslin, 2004, Wilson et al., 2020). The current version of the schematic model I outline here only

deals with a small aspect of this problem, in dealing with individual phonemes, full phoneme sequences

and morphological units. Moving forward, any comprehensive model of speech comprehension should be

able to readily deal with the dynamic structure of speech, both in terms of the temporal structure of the

input and of the target structures that need to be generated from that input.

Along similar lines, the semantic meaning of utterances has been primarily modelled in terms of

the meaning of individual words (Huth et al., 2016), rather than the contextual meaning of the entire

utterance, or even the contextual meaning of the non-linguistic environment that a verbal exchange

is taking place within. There are some efforts to leverage the impressive advances seen in artificial

intelligence language models. For example, by building candidate representations of the meaning of

utterances with larger context windows (Caucheteux et al., 2022), or by using the representations from

a language model which has been jointly trained on linguistic and image data (Zhang et al., 2020, 2021).

A crucial future direction will be to understand how complex meanings are created and represented in

neural activity, not just from a single word, but of a full utterance as would be encountered in natural

speech. This is, of course, one of those holy grail questions. The ability to combine words flexibly is one

of the crucial abilities of human language, permitting the user to convey any infinite possibility of novel
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meanings (Chomsky, 2009, Pylkkänen, 2019).

As a final point, I would like to mention some of the exciting recent advances in neural recording

technologies. Historically, language neuroscience research entailed recording neurophysiological activity

from large populations of neurons – on the scale of hundreds of thousands for MEG and EEG, and tens

of thousands for ECoG and sEEG. Because language does not seem to be present in any animal other

than the human, the application of animal models for better understanding language processing has been

limited (Fitch and Tallal, 2003). This presents the challenge that the population-level recordings are

ambiguous as to the true neural configuration that gives rise to the summation of activity that can be

recorded from the skull or cortical surface. This has had sizeable consequences on the size and speed of

research advances that have been possible, as compared to neuroscientific inquiry into cognitive capacities

that are shared with other animals, such as lower level visual processing or decision making. However,

neural recording techniques that were originally developed for use in non human mammals are now being

adapted for safe and successful use in humans (Bullard et al., 2020, Chung et al., 2022, Paulk et al.,

2022). I believe that having access to single neuron ensemble activity will represent a major paradigm

shift in the type of questions that can be asked, and the precision with which we can answer them. And

in turn, serve to constrain our interpretation mass population-level activity based on our understanding

of the underlying single-cell generators.

It is an exciting time for speech neuroscience. Advances in neural recording techniques, analytical

approaches and sophisticated language models will be invaluable tools in further delineating the neural

architecture of speech processing. Drawing upon different areas of expertise fosters rich and innovative

reasoning, expands and advances analytical approaches, and promotes parsimonious explanations that

satisfy multiple angles of constraint. I believe that breakthroughs in language research will be borne

from the intentional coalition of neuroscience, data science and linguistics, and I am excited to see what

insights the next decade brings.
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Jean-Rémi King, Laura Gwilliams, Chris Holdgraf, Jona Sassenhagen, Alexandre Barachant, Denis En-

gemann, Eric Larson, and Alexandre Gramfort. Encoding and decoding framework to uncover the

algorithms of cognition. The Cognitive Neurosciences,, 6:691–702, 2020.

Matthew K Leonard, Maxime O Baud, Matthias J Sjerps, and Edward F Chang. Perceptual restoration

of masked speech in human cortex. Nature communications, 7(1):1–9, 2016.

Annick Lesne. Shannon entropy: a rigorous notion at the crossroads between probability, information

theory, dynamical systems and statistical physics. Mathematical Structures in Computer Science, 24

(3), 2014.

Roger Levy, Klinton Bicknell, Tim Slattery, and Keith Rayner. Eye movement evidence that readers

maintain and act on uncertainty about past linguistic input. Proceedings of the National Academy of

Sciences, 106(50):21086–21090, 2009.

Alvin M Liberman and Ignatius G Mattingly. The motor theory of speech perception revised. Cognition,

21(1):1–36, 1985.

Catherine-Marie Longtin and Fanny Meunier. Morphological decomposition in early visual word pro-

cessing. Journal of Memory and Language, 53(1):26–41, 2005.

18

https://creativecommons.org/licenses/by-sa/4.0/


This work is shared under a CC BY-SA 4.0 license unless otherwise noted

Paul A Luce. A computational analysis of uniqueness points in auditory word recognition. Perception

& Psychophysics, 39(3):155–158, 1986.

Alec Marantz. No escape from syntax: Don’t try morphological analysis in the privacy of your own

lexicon. University of Pennsylvania working papers in linguistics, 4(2):14, 1997.

Alec Marantz. No escape from morphemes in morphological processing. Language and cognitive processes,

28(7):905–916, 2013.

David Marr. Visual information processing: The structure and creation of visual representations. Philo-

sophical Transactions of the Royal Society of London. B, Biological Sciences, 290(1038):199–218, 1980.

William Marslen-Wilson and Paul Warren. Levels of perceptual representation and process in lexical

access: words, phonemes, and features. Psychological review, 101(4):653, 1994.

Jessica Maye, Daniel J Weiss, and Richard N Aslin. Statistical phonetic learning in infants: Facilitation

and feature generalization. Developmental science, 11(1):122–134, 2008.

Bob McMurray, Michael K Tanenhaus, and Richard N Aslin. Within-category vot affects recovery from

“lexical” garden-paths: Evidence against phoneme-level inhibition. Journal of memory and language,

60(1):65–91, 2009.

Nima Mesgarani, Connie Cheung, Keith Johnson, and Edward F Chang. Phonetic feature encoding in

human superior temporal gyrus. Science, 343(6174):1006–1010, 2014.

Rachel L Moseley and Friedemann Pulvermüller. Nouns, verbs, objects, actions, and abstractions: Local

fmri activity indexes semantics, not lexical categories. Brain and language, 132:28–42, 2014.

Elissa L Newport and Richard N Aslin. Learning at a distance i. statistical learning of non-adjacent

dependencies. Cognitive psychology, 48(2):127–162, 2004.

Angelique C Paulk, Yoav Kfir, Arjun R Khanna, Martina L Mustroph, Eric M Trautmann, Dan J Soper,

Sergey D Stavisky, Marleen Welkenhuysen, Barundeb Dutta, Krishna V Shenoy, et al. Large-scale

neural recordings with single neuron resolution using neuropixels probes in human cortex. Nature

Neuroscience, 25(2):252–263, 2022.

Liina Pylkkänen. The neural basis of combinatory syntax and semantics. Science, 366(6461):62–66, 2019.

Kathleen Rastle and Matthew H Davis. Morphological decomposition based on the analysis of orthog-

raphy. Language and cognitive processes, 23(7-8):942–971, 2008.

Ned T Sahin, Steven Pinker, and Eric Halgren. Abstract grammatical processing of nouns and verbs in

broca’s area: evidence from fmri. Cortex, 42(4):540–562, 2006.

19

https://creativecommons.org/licenses/by-sa/4.0/


This work is shared under a CC BY-SA 4.0 license unless otherwise noted

Arthur G Samuel. Phonemic restoration: insights from a new methodology. Journal of Experimental

Psychology: General, 110(4):474, 1981.

Robert Schreuder and R Harald Baayen. Modeling morphological processing. Morphological aspects of

language processing, 2:257–294, 1995.

Ediz Sohoglu and Matthew H Davis. Perceptual learning of degraded speech by minimizing prediction

error. Proceedings of the National Academy of Sciences, 113(12):E1747–E1756, 2016.

Ediz Sohoglu, Jonathan E Peelle, Robert P Carlyon, and Matthew H Davis. Predictive top-down in-

tegration of prior knowledge during speech perception. Journal of Neuroscience, 32(25):8443–8453,

2012.

Marcus Taft. Interactive-activation as a framework for understanding morphological processing. Language

and cognitive processes, 9(3):271–294, 1994.

Marcus Taft. Morphological decomposition and the reverse base frequency effect. The Quarterly Journal

of Experimental Psychology Section A, 57(4):745–765, 2004.

Feng-Ming Tsao, Huei-Mei Liu, and Patricia K Kuhl. Speech perception in infancy predicts language

development in the second year of life: A longitudinal study. Child development, 75(4):1067–1084,

2004.

Richard M Warren. Perceptual restoration of missing speech sounds. Science, 167(3917):392–393, 1970.

Benjamin Wilson, Michelle Spierings, Andrea Ravignani, Jutta L Mueller, Toben H Mintz, Frank Wijnen,

Anne Van der Kant, Kenny Smith, and Arnaud Rey. Non-adjacent dependency learning in humans

and other animals. Topics in cognitive science, 12(3):843–858, 2020.

Yizhen Zhang, Kuan Han, Robert Worth, and Zhongming Liu. Connecting concepts in the brain by

mapping cortical representations of semantic relations. Nature communications, 11(1):1–13, 2020.

Yizhen Zhang, Minkyu Choi, Kuan Han, and Zhongming Liu. Explainable semantic space by grounding

language to vision with cross-modal contrastive learning. Advances in Neural Information Processing

Systems, 34:18513–18526, 2021.

20

https://creativecommons.org/licenses/by-sa/4.0/

	Introduction
	From continuous to discrete
	Discretisation in the face of ambiguity
	Revising discrete percepts
	Overlapping computations
	Using speech sounds to access stored units
	Future Directions

