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REGULAR ARTCILE

Top-down information shapes lexical processing when listening to continuous
speech
Laura Gwilliams a, Alec Marantzb, David Poeppelb and Jean-Remi Kingc

aUniversity of California, San Francisco, CA, USA; bNew York University, New York, NY, USA; cPSL University, CNRS, Paris, France

ABSTRACT
Speech is often structurally and semantically ambiguous. Here we study how the human brain uses
sentence context to resolve lexical ambiguity. Twenty-one participants listened to spoken
narratives while magneto-encephalography (MEG) was recorded. Stories were annotated for
grammatical word class (noun, verb, adjective) under two hypothesised sources of information:
“bottom-up”: the most common word class given the word’s phonology; “top-down”: the
correct word class given the context. We trained a classifier on trials where the hypotheses
matched (about 90%) and tested the classifier on trials where they mismatched. The classifier
predicted top-down word class labels, and anti-correlated with bottom-up labels. Effects peaked
∼100 ms after word onset over mid-frontal MEG sensors. Phonetic information was encoded in
parallel, though peaking later (∼200 ms). Our results support that lexical representations are
built in a context-sensitive manner, which precedes sensory phonetic processing. We showcase
multivariate analyses for teasing apart subtle representational distinctions from neural time series.
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1. Introduction

Speech containsmultiple sources of ambiguity. The same
sounds, in the same order, can mean different things
depending on context and expectations (Fodor et al.,
1974; Krovetz & Croft, 1992; Rodd, 2018; Simpson, 1984;
Tabossi et al., 1987). Despite the prevalence of ambiguity
in speech (Rodd et al., 2002), listeners usually understand
speech without difficulty and without error.

The saving grace of speech comprehension is context.
Higher order structures of language, in the form of syn-
tactic rules and overarching semantic topic, significantly
constrain the space of plausible subsequent input
(Hagoort et al., 2004; Lee & Federmeier, 2009; Miller &
Isard, 1963; Spivey-Knowlton et al., 1993). Given the
utterance “MJ looked at the stars using a…”, the upcom-
ing word is more likely to be a noun, given the syntactic
structure, and likely to be a word related to astronomy,
given the semantic topic. This contextual guidance is par-
ticularly important in the case of lexical ambiguity, when
a word (e.g. spell, watch, lean) has multiple meanings.
Consider the difference between “Terri cast a spell” and
“Laura struggled to spell”, where the context favours
one of the multiple possible interpretations of the
ambiguous word.

The brain makes use of these constraints to guide
interpretations of the input (Cope et al., 2017; Davis &
Johnsrude, 2007; Faust & Chiarello, 1998; Gibson, 2006;

Rodd et al., 2004; Zekveld et al., 2006). Violations of
semantic or syntactic constraints are known to cause a
reliable increase in brain responses, as measured with
electro-encephalography (EEG) (Friederici et al., 1993;
Gouvea et al., 2010; Hagoort et al., 2004; Kaan et al.,
2000; Kutas & Hillyard, 1984), and sentences containing
a lot of ambiguous words elicit stronger neural
responses in the inferior temporal lobe and inferior
frontal gyrus (Rodd et al., 2005), even when comprehen-
sion is equivalent to low ambiguity sentences.

How does the brain use contextual constraints to
guide lexical access? Contextual influence has been
most extensively studied in terms of how it disambigu-
ates the semantics of a word. The exhaustive model
posits that all possible meanings of a word are activated
initially, weighted by their relative frequency of use
(Duffy et al., 1988; Gwilliams et al., 2017; Sereno et al.,
2006). Then, context serves to select the appropriate
one (Rodd et al., 2010; Simpson, 1984; Simpson &
Kang, 1994). Support for this model includes evidence
from cross-modal priming studies, where a participant
hears an ambiguous word such as “bug”, and after
either a short or long delay is required to make a
lexical decision on a written word that is related to
one of the word’s meanings (e.g. “spy” or “spider”).
Even if the sentence context is heavily biased towards
one meaning, participants’ short-delay lexical decisions
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are faster on words that shared either meaning with the
auditory probe. In the long-delay condition, however,
only the context-appropriate meaning is facilitated
(Onifer & Swinney, 1981; Swinney et al., 1979). This sup-
ports the position that lexical processing initially acti-
vates all meanings of a word, which are then narrowed
down to select just the context appropriate meaning.

While word meaning has been the primary focus of
lexical ambiguity resolution, a word contains many
properties, and semantics represents just a subset of
them (Gwilliams, 2020). Words also contain grammatical
features, such as word class (e.g. noun, verb, adjective)
and the relevant properties of that grammatical class
(e.g. number and gender, or tense and aspect). When
ambiguity in word identity means uncertainty about
word class (i.e. to pinV versus the pinN), the context
also constrains the grammatical category of the word
under scrutiny. It has been found that, contra to the
semantic ambiguity literature, prior context serves to
constrain the interpretation of speech input directly
and immediately, such that only the appropriate word
class is activated (Gaston & Marantz, 2018). This is
more in line with context-dependent processing
models, which posit that only the meaning consistent
with the context is accessed, ignoring any other mean-
ings that a word may assume in other contexts
(Gennari et al., 2007; Mollo et al., 2018).

While humans constantly disambiguate speech using
contextual information, when, where and how top-down
grammatical disambiguation is implemented in the brain
remain unknown. In the present study, we use lexical

ambiguity to test two competing hypotheses. The first
states that word class is initially generated bottom-up
based on the phonological form of the utterance, and
it is corrected later (if necessary) using top-down infor-
mation. This is the order of computations that would
be hypothesised based upon the semantic ambiguity
resolution literature, in line with the “exhaustive
model”. The second states that the top-down context
guides word representations directly, without requiring
an initial bottom-up parse. This is in line with the
“context-dependent model”. For a visual schematic of
the predicted results under each hypothesis, see Figure 1.

To adjudicate between these alternatives, we
recorded magneto-encephalography (MEG) from 21
native English participants while they listened to four
short stories. We modelled neural responses as a func-
tion of word class (e.g. noun, verb, adjective). Note
that while we are not directly using a contextual
model to predict one outcome or another, we reason
that if the brain represents context-sensitive word class
labels, this must have been derived using prior contex-
tual information; and if the brain represents frequency-
based labels, this must have been derived using learnt
statistics over word forms. Within our ecological task of
story listening, we found support for the second hypoth-
esis: The pattern of activity that represents grammatical
class in continuous speech directly encodes contextually
sensitive grammatical class labels. The brain thus
appears to make higher order interpretations accessible
as early as possible to form a rapid and coherent under-
standing of speech in context.

Figure 1. Analysis predictions. Schematic of expected results under our two hypotheses. The x-axis represents time relative to word
onset. The y-axis represents decoding performance, where the dashed line is chance-level. The purple line represents the decoding of
bottom-up labels of word class; the orange line represents decoding the top-down labels. The lines can go above and below chance
performance: If the line goes below chance, it means that the classifier is systematically predicting a different class label. Hypothesis 1
predicts that evidence about word class from its phonological form is processed first (bottom-up information), followed by the higher-
order sentence context (top-down information). Consequently, we would be able to first decode the bottom-up representation of
word class, followed by the top-down representation. Hypothesis 2 predicts that top-down information exerts its influence on
lexical representations directly. If this is true, we would expect to only be able to decode the top-down labels of word class from
neural responses, with no trace of the bottom-up representation being encoded.
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2. Methods

2.1. Participants

Twenty-one native English speakers were recruited for
the study (13 female; age: M = 24.8, SD = 6.4). All
were right-handed, with normal hearing and no
history of neurological disorders. All provided their
informed consent and were compensated for their
time. The study was approved by the IRB committee
at New York University Abu Dhabi, where the study
was conducted.

2.2. Stimuli

Four fictional stories were selected from the Manually
Annotated Sub-Corpus (MASC), which is a subset of
the Open American National Corpus (Ide & Macleod,
2001) that has been annotated for its syntactic structure
using Penn Treebank format.

We synthesised the stories using the Mac-OS text-to-
speech application. Three synthetic voices were used
(Ava, Samantha, Allison). Story duration ranged from
10–25 min. Participants answered a two-choice question
via button press on the story content every ∼3 min. All
participants performed this task at ceiling (98% correct).

2.3. Data acquisition

We used a 208-channel axial gradiometer MEG system
(Kanazawa Institute of Technology, Kanazawa, Japan).
Data were acquired at a sample rate of 1000 Hz, with
online low-pass filter at 200 Hz and a high-pass filter at
0.03 Hz.

Stimuli were presented to participants though plastic
tube earphones placed in each ear (Aero Technologies),
at a mean level of 70 dB SPL. Each recording session
lasted about one hour. Each participant completed
two recording sessions.

2.4. Pre-processing

We removed bad channels from the MEG data using an
amplitude threshold cut-off of 3SD across all channels
within a recording session, and linearly interpolated
the bad channels using closest neighbours. We then
applied a 1–50 Hz band-pass filter with firwin design
(Gramfort et al., 2014) and downsampled the data to
250 Hz. The pre-processed continuous MEG data were
epoched from −300 to 1000 ms relative to word
onset, and from −300 to 1000 ms relative to word
offset. No baseline correction was applied. All prepro-
cessing was performed using the Python package
mne, version 0.22.0.

2.5. Data annotation

We annotated the stories for the identity and timing of the
6898 words they contained. We were primarily interested
in two properties of these words. First is the word class
predicted by the “bottom- up” hypothesis: i.e. the most
frequent word class given its phonological form. We
obtained these labels by querying the English Lexicon
Project (Balota et al., 2007) for the word class of the
words in our stories. The English Lexicon Project derives
these labels from a collection of annotated spoken and
written corpora. Second is the word class predicted by
the “top-down” hypothesis, which refers to the word
class that a word actually is assigned in the given sentence
context. We obtained these labels from the manual Penn-
Treebank syntactic annotation of our stories.

We focus on trials where the word class is an adjec-
tive, a noun or a verb in either the top-down or
bottom-up definition of word class. This sub-selection
yielded 3941 epochs per subject per run, with 1698
unique words total, 1586 unique words where the two
definitions matched and 155 unique words where the
two definitions mismatched. The average word duration
was 5.3 phonemes in the match condition and 5.6 pho-
nemes in the mismatch condition.

Some of the words whose class differ across these
two definitions were polysemous (had related meanings,
and likely etymologically related) while others were
homographs (had unrelated meanings, and likely not
etymologically related). Unfortunately, we did not have
enough trials to separate the analysis by this factor,
but it would be an interesting avenue for future work
to explore.

2.6. Analysis implementation

The majority of decoding analyses used the python
package scikit-learn, version 0.24.1. This includes the
functions LogisticRegressionCV, StandardScaler, and
ShuffleSplit.

2.6.1. Trial-type sets
We organised trials into two sets. “Match trials” refer to
trials where the word class was identical across the
bottom-up and top-down hypotheses. This encom-
passed 3662 trials per subject, per run (93%). “Mismatch
trials” refers to trials where the word class was different
depending on how the word class was defined (279
trials, 7%). Our primary question was whether the
bottom-up or top-down definition of word class best
explains neural activity when the definitions conflict.
For this, match trials were used to train the classifier,
and mismatch trials were used to test the classifier.
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In the mismatch trials, the word is used as its less fre-
quent word class. For example, according to the Brown
corpus, the word “watch” is used as a verb 86% of the
time and as a noun 14% of the time. We consider
“watch” a mismatch item when it is used as a noun,
because its top-down usage (e.g. “the watch”) mis-
matches with its most common bottom-up label (verb).

Within the mismatch trials, the average token counts
of the Brown corpus are 1102 for the top-down usage,
and 1980 for the bottom-up usage. This means that
the words are nearly twice as likely to be used as the
bottom-up label than the top-down label.

2.6.2. Optimisation
We used a logistic regression trained to perform a one-
versus-all classification on the 3-class problem (noun,
verb, adjective). The model was fit on each time
sample independently, and no sliding window was
used. We optimised the regularisation parameter at
each time sample, selecting the best model fit on ten
log-spaced alpha parameters from 1e−4 to 1e+4
(using LogisticRegressionCV).

We trained the classifer on the 3662 match trials and
tested on the remaining 279 mismatch trials. We used
the classifier to estimate the probabilistic class predic-
tion for the held out test trials: i.e. the soft-maxed dis-
tance of that trial from the hyper-plane distinguishing
one word-class category from another.

2.6.3. Evaluation
To evaluate decoding performance we compared the
model’s probabilistic predictions (ypred) separately to
the bottom-up labels (ybu) and to the top-down labels
(ytd). We used the receiver operating characteristic
(ROC) area under the curve (AUC) to summarise the like-
lihood that brain activity responded similarly to either
hypothesis.

2.6.4. Statistical assessment
To evaluate the reliability of decoding over time, we
used a non-parametric temporal permutation cluster
test across participants. First, we compute a t-value at
each time-point by submitting the distribution of decod-
ing accuracy across subjects to a one-sample t-test
against chance performance. Second, we identified
putative clusters by grouping consecutive t-values that
exceeded a t > 1.96 (p < 0.05) threshold. Third, we
compare the mean t-value within the cluster to a null
distribution of t-values, which is formed by randomly
flipping the sign of the distance from chance level, re-
running the cluster forming step, and collecting the
average t-value. This was performed 1000 times. We
consider clusters significant when their mean t-values

exceeds 950 of the lowest values in the distribution
(p < 0.05).

2.6.5. Word-class decoding
To evaluate the base decoding of word class, we train
the same decoder described above on just the match
trials. The classifier was trained on 80% of trials and
tested on the held-out 20% within a 5-fold cross vali-
dation loop. Performance was evaluated on the 5-fold
average.

3. Results

Our goal was to understand the contribution of bottom-
up and top-down computations during naturalistic lis-
tening, focusing on the lexical representation of word
class (e.g. noun, verb, adjective). We defined word
class in two different ways. First, a bottom-up definition:
The most frequent word class ascribed to that phonolo-
gical form (Figure 2(A)). For instance, the phoneme
sequence “hammer” is most often used as a noun, and
so, this would be the bottom-up definition regardless
of the context it was being used in. Second, a top-
down definition: The true word class assigned given
the sentence it is occurring within (Figure 2(B)). The
top-down label of word class corresponds to when the
word is being used as its less frequent word class (e.g.
“hammer” as a verb).

First, we tested a hypothesis-free encoding of word
class, on trials where top-down and bottom-up labels
matched. We observed that word class was decodable
from the neural responses to the spoken narratives. To
test this, we subset all words that were either a noun,

Figure 2. Definitions of word class. A: Bottom-up word class cor-
responds to the most frequent word class category assigned to a
particular phonological form. In this case, the word “hammer” is
more often used as a noun than a verb; therefore, the bottom-
up definition of word class for this word is noun. B: Top-down
word class corresponds to the grammatical word class the
item is being used in within the sentence. The two sentences
provide examples where the same word, “hammer” is being
used as a noun (the sentence above) and as a verb (the sentence
below).
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verb, or adjective, and whose bottom-up and top-down
definitions gave the same word class label (3662 trials).
We then used logistic regression to distinguish the
three classes, and the Area Under the Curve (AUC) to
summarise decoding performance. Using a temporal
permutation cluster test, we found that nouns were
decodable during the entire epoch, timelocked both to
word onset (average t = 8.1, p < .001) and word offset
(average t = 9.2, p < .001). Verbs were decodable from
−40 to 1050 ms from word onset (average t = 7.3, p
< .001) and from −400 to 1080 ms relative to word
offset (average t = 8.2, p < .001). Although adjectives
were not significantly decodable relative to word onset
after correction for multiple comparisons, they were

decodable relative to word offset from 210 to 320 ms
(average t = 3.6, p = .004) and from 370 to 810 ms
(average t = 4.4, p < .001).

Next, we averaged decoding performance over the
three classes (black trace in Figure 3, below), to assess
the time-course of word class encoding, more broadly.
We find that decoding performance is higher relative
to word offset than word onset (mean AUC from 0 to
1000ms; word onset = 0.515; word offset = 0.52; t value
= 2.7; p = 0.02). Furthermore, we find two reliable
peaks in decoding performance. Relative to word
onset, averaged over subjects, the peaks occur at
around 110ms and 680ms. Relative to word offset, they
occur at 390 and 600 ms.

Figure 3. Timecourse of word class decoding. Above: Result of decoding the three word classes time-locked to word onset (left) and
word offset (right). Below: Comparing bottom-up and top-down labels to the decoding model’s predictions on the mismatch trials.
Horizontal lines below the timecourse represent the significant temporal clusters resulting from the permutation test. *** = p < .001.
Shading represents standard error of the mean across subjects.
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Overall, this first set of analyses confirms that word
class is encoded in neural activity, and it is maximally
decodable around 400–600 ms after word offset.

Second, and most critically for the aims of the current
study, we assessed whether the neural representation of
word class, in the way it is encoded during continuous
speech, follows a “bottom-up → top-down” sequence
of representation, or whether word class complies with
top-down context directly. This is the analysis for
which we plot predictions in Figure 1. We trained a logis-
tic regression classifier on trials where the bottom-up
and top-down labels of word class matched (same as
above), and we examined the predictions of trials
where they diverged (see Methods for details). We
found significant decoding of top-down labels relative
to word onset, from 30 to 260 ms (average t = 2.8,
p = .03) and 650 to 1100 ms (average t = 2.7, p = .005).
They were also decodable relative to word offset
(−280–800 ms; average t = 3.7, p < .001). We found that
decoding of bottom-up labels were significantly worse
than chance in all cases, relative to word onset
(0–190 ms; average t =−3.0, p = .02) and relative to
word offset (−250–840 ms; average t =−3.1, p < .001).
Our results align with Hypothesis 2 shown in Figure 1:
Top-down labels are predicted above chance through-
out the timecourse of reliable decoding; bottom-up
labels are predicted below chance throughout. This
demonstrates that the representation of word class
that emerges during continuous speech processing is
significantly similar to the top-down definition of word
class, and significantly dissimilar to the bottom-up
definition of word class.

While this is an interesting result, there is a potential
confound that we needed to consider. Namely, that

apparent top-down effects may actually be a confound-
ing response to the previous word in the sequence. For
example, in context, verbs are often preceded by par-
ticles like “to”, and nouns are often preceded by determi-
ners like “the”. As such, it is possible that our classifier is
learning the response to the words which systematically
come before our words of interest, rather than reflecting
a response to our words of interest per se. We tested this
potential counter-explanation in two ways. First, we re-
ran our same analysis time-locked to the onset of the
preceding word (Figure 5, top left). We found that
neither bottom-up or top-down word class of critical
w0 could not be decoded from the neural response to
w-1 (all uncorrected p-values > .9, no temporal clusters
found. Average effect size of top-down = 0.5, average
t-value =−0.14; average effect size of bottom-up =
0.49, average t-value =−0.011). Second, we modified
our analysis by removing all items from the train set
which shared preceding words with the test set
(Figure 4). For example, if “to” preceded a verb in our
test set, we removed all instances of “to + verb” in our
training set. This ensured that the classifier was unable
to use prior word information to predict word class
labels. This analysis yielded weaker but qualitatively
similar results. Neither top-down or bottom-up labels
were significantly decodable relative to word onset,
although numerically top-down decoding was above
chance (mean AUC = 0.503) and bottom-up decoding
was below chance (mean AUC = 0.498). Time-locked to
word offset, top-down labels were significantly
decoded above chance from 144-672ms (average t-
value = 2.77; p = .005) and bottom-up labels were signifi-
cantly decoded below chance from 512 to 880 ms
(average t-value =−2.5; p = 0.01). In sum, both analyses

Figure 4. Control analysis: Removing trials from the training set that share a common preceding word to critical items in the test set.
Left: Decoding timelocked to word onset. Right: Decoding timelocked to word offset. Horizontal lines below the timecourse represent
the significant temporal clusters resulting from the permutation test at p < .05. Shading represents standard error of the mean across
subjects.
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provide evidence that our top-down word class decod-
ing effect is not driven by the potential confound of
sensory processing of the prior word.

Building from this, we observed that word class
decoding does not decrease to chance level immedi-
ately after the word ends. Rather, we see that it
remains present until around 400 ms past the offset of
the next word (Figure 5, lower right panel). This demon-
strates that lexical information is long-lived, and it is
maintained while subsequent words are entering into
the system.

Given the wealth of previous work studying lexical
ambiguity, which has demonstrated that bottom-up rep-
resentations are accessed despite of conflicting context
(Rodd et al., 2010; Simpson, 1984; Simpson & Kang,
1994), we conducted several additional analyses to test
whether a bottom-up representation of word class
exists in parallel to the top-down representation. One
important question is whether bottom-up sensory pro-
cesses are by-passed entirely, in favour of the top-
down contextual representation? To evaluate this, we
trained a classifier to distinguish phonetic feature con-
trasts of the first phoneme of our words, and the last
phoneme of our words. We picked three contrasts that
have been found to be strongly encoded in neural
responses in previous work (Mesgarani et al., 2014; Gwil-
liams et al., 2022), namely: voicing, fricative manner and
nasal manner. Like the analysis described above, we
trained the classifier on match trials and evaluated

decoding performance on the mismatch trials. This
analysis yielded two findings. First, phonetic contrasts
are significantly encoded in neural activity time-locked
to word onset (96–488 ms; t = 3.3; p = 0.01). There was
a numerical positive deflection of decoding the phonetic
features of the final phoneme at word offset, but this did
not reach significance (average t-values = 0.11). In pre-
vious work we have found significant above-chance
decoding for phonetic features at word offset (Gwilliams
et al., 2022). We are choosing not to interpret the differ-
ence between phonetic decoding onset and offset,
which could possibly be attributed to distribution of
different phonetic features at different phoneme pos-
itions, or to the tendency in English to assimilate and
co-articulate sounds that occur at the ends of words
(Nooteboom, 1981).

The word onset result suggests that, although con-
tinuous speech processing represents word class in a
top-down manner, the brain still processes bottom-up
phonetic content of the word. Second, the latency of
phonetic decoding proceeds word class decoding: The
rise of word class decoding begins at around 0 ms rela-
tive to onset, whereas it begins at around 100 ms for
phonetic features, leading to a peak time of 96 ms for
top-down word class and 208 ms for phonetic decoding.
This suggests that sensory information of the word is
encoded by the brain in parallel to word class infor-
mation, and further confirms that bottom-up processes
are not the means by which that word is initially

Figure 5. Timecourse of word class decoding at different word positions. Left: Decoding timelocked to the prior word. Middle: Decod-
ing timelocked to the current word (recapitulation of the results in Figure 3). Right: Decoding timelocked to the subsequent word.
Horizontal lines below the timecourse represent the significant temporal clusters resulting from the permutation test at p < .05.
Shading represents standard error of the mean across subjects.
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processed, because sensory information is encoded later
in time (Figure 6).

Building on this analysis, we sought to investigate the
spatial patterns that encode word class and compare
them to the spatial patterns that encode lower-level
phonetic information. The subtraction between fricative
and voicing evoked responses served as our phonetic
contrast, and between noun and verb served as our
word class contrast (Figure 7). We ran a one-sample per-
mutation cluster test on these contrast subtractions to
assess whether it significantly differed from zero (see
Methods for details). In line with our decoding analysis,
we found that the phonetic contrast peaked significantly
later than the word class contrast. Phonetics was signifi-
cant from 150 to 270 ms (average t-value over significant
sensors = 3.3; p = .008) and the word class contrast was
significant from 20 to 850 ms (average t = 3.1; p = .01).
The responses that discriminate these word classes
were largest at sensors over temporal cortex, evolving
from a bilateral mid-line topography, to a more frontal
topography, to a left-lateralised topography over time.
The phonetic contrast was more distributed, extending
from mid-line to frontal sensors bilaterally. The phonetic
topography at 200 ms was significantly different from
the word class topography at both 100 ms (average t
= 2.6; p = .014) and 200 ms (average t = 2.4; p = .023).
This result suggests that word class is encoded within
a distinct neural population from bottom-up phonetic
detail, and it is maintained for a significantly longer

period of time, well into the processing of the sub-
sequent word(s).

Another possible reason why we do not observe
above-chance bottom-up decoding is that effects are
masked by cases where the bottom-up and top-down
labels are more equally probable. Perhaps on the trials
where the bottom-up label is much more likely than
the top-down label, we would be able to see evidence
for bottom-up word class decoding. To test this, we
extracted part of speech (POS) usage tags from four
English corpora (Brown, Treebank, Conll2000 and
NPSChat) and summed the number of instances of
noun, verb and adjective in each. We then computed a
ratio score of the top-down and bottom-up label
usage based on the relative frequency of the different
POS categories. We split the critical test trials into two
groups, as a function of the median of this ratio
metric, and decoded top-down and bottom-up labels
separately in these two sets of trials.

The results of this analysis are presented in Figure 8.
First, and most importantly, we find that the bottom-
up label is not significantly predicted above chance in
either of the two subsets of trials. This suggests that
even in the context of strong mismatch, where the
bottom-up word class is much more likely than the
top-down word class, we still do not find evidence for
a representation of the bottom-up word class label.

Second, we observed differences in the dynamics of
the decoding between the weak and strong mismatch

Figure 6. Timecourse of phonetic and word class decoding. Left: Decoding timelocked to word onset. Teal corresponds to the average
decoding of voicing, fricative manner and nasal manner, of the first phoneme of the word. Orange and purple traces correspond to the
part of speech decoding shown in Figure 3. Right: Same analysis time-locked to the last phoneme of the word. Teal corresponds to the
average decoding of the features of the last phoneme of the word. Horizontal lines below the timecourse represent the significant
temporal clusters resulting from the permutation test at p < .05. Shading represents standard error of the mean across subjects.
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trials. When the top-down usage is rarer, the peak of
average decoding occurs very late (∼900 ms), whereas
when top-down usage is more common, average decod-
ing peaks much earlier (∼100 ms). This could be readily
interpreted under an evidence accumulation hypothesis,
whereby a less common representation takes more time

to derive than a more common one. It is interesting
though, that in either case, the brain does not seem to
first derive a bottom-up representation and then
replace that with a top-down representation later in
time: in all cases, a top-down representation is present
from the beginning of processing.

Figure 7. Sensor topographies of feature contrasts over time, relative to word onset. t-values over time and space for a phonetic
contrast (above) and a word class contrast (below) when applying a one-sample t-test on the magnitude of the difference. Small
white circles represent sensors and time-points with a significant difference between contrasts (Bonferroni corrected p < .05). Time
is plotted relative to word onset.

Figure 8. Decoding separated into trials where the bottom-up label is relatively frequent (top row) and relatively infrequent (bottom
row). Orange lines correspond to top-down decoding, and purple lines correspond to bottom-up decoding. The dashed black line is
the result when testing on all 202 trials, in order to allow for direct comparisons with the main result. Horizontal lines below the time-
course represent the significant temporal clusters resulting from the permutation test at p < .05. Shading represents standard error of
the mean across subjects
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Finally, we sought to understand whether a bottom-
up representation of word class exists in parallel to the
top-down representation, but we were unable to
detect it because it occupies a distinct neural pattern.
Using just the mismatch trials for training and testing,
we built two classifiers: One decoding the bottom-up
labels, and another decoding the top-down labels.
Because of the very low number of trials included in
the analysis, our estimates were too noisy to draw con-
clusions. Both top-down and bottom-up labels were
decodable at chance level (top-down average AUC =
0.501; bottom-up average AUC = 0.502). Future work
should seek to explore this observation further, by train-
ing a model on responses to words out of context (puta-
tively boosting the bottom-up representation) and
training a model on responses to those same words
within context as we did here (putatively boosting the
top-down representation). Such an approach would
assess whether bottom-up representations exist in paral-
lel, though occupying a different neural pattern, to the
top-down representations.

4. Discussion

Deriving meaning from speech involves overcoming a
wealth of sensory, (sub)lexical and structural ambiguities.
In this study, we test how ambiguity of a word’s gramma-
tical class (noun, verb, adjective) is resolved during
natural story listening. We find that the neural represen-
tation of word class, as generated when processing con-
tinuous speech, more closely aligns with the contextually
appropriate grammatical category of a word than the
category most often realised by that word form. This
suggests that context constrains how grammatical prop-
erties of lexical items are represented and interpreted.

Previous work investigating top-down processing has
primarily tested the context of adverse listening con-
ditions. For instance, to make comprehension more
difficult, studies have adjusted the signal-to-noise ratio
by adding noise on top of the speech signal (Davis
et al., 2011; Zekveld et al., 2006) or degraded the
quality of the speech signal (Hannemann et al., 2007;
Sohoglu et al., 2012). Other studies have engineered
language stimuli to include systematic ambiguity at
the phonetic (Gwilliams et al., 2018; Lee et al., 2012)
and lexical levels (Rodd et al., 2002, 2005), or provided
top-down information in a different modality, such as
hearing speech while reading text (Sohoglu et al.,
2014). All these studies demonstrate, in different ways,
that top-down information serves to resolve noise and
ambiguity in the speech stimulus. Our work highlights
that top-down processing is not only recruited when
speech is particularly difficult to understand. But

rather, even in ideal listening conditions, we observe
clear evidence of top-down processing in service to
grammatical processing.

The significant below-chance decoding we observe
for bottom-up frequency-based labels of word class is
interesting considering previous findings on lexical
semantic ambiguity resolution. In that literature, it has
been found that “bottom-up” information, i.e. all poss-
ible meanings of that word, are activated initially, fol-
lowed by the “top-down” final context-congruent
interpretation of the word (Rodd, 2018; Rodd et al.,
2010; Simpson, 1984; Simpson & Kang, 1994). There are
a few possible explanations for the difference between
past semantic studies and our current results on gram-
matical processing.

First, it is possible that grammatical properties and
semantic properties of lexical items interact with
context in fundamentally different ways. The represen-
tational space of semantics is continuous and subject
to coercion, and semantic interpretation can be
influenced by context flexibly and creatively (Gwilliams,
2020; Huth et al., 2012, 2016; Pustejovsky & Jezek, 2008).
By contrast, the grammatical properties of words are
binary, and prior context serves to select grammatical
interpretations deterministically (Marantz, 1997). In this
way, semantic processing may operate by first activating
all semantic features associated with a given word form,
and then combining those features with the surround-
ing semantic context to yield an outcome; whereas
grammatical processing may prioritise identification of
the single correct interpretation, for which prior
context is a much more reliable cue than word form
association. This would explain why the encoding of
word class reflects the final, contextually aligned,
“correct” category, from the beginning of processing
that lexical item. The idea that different aspects of a
word (e.g. word form, semantics) are constrained by
context in different ways was also put forward by
Sereno et al. (2006). Here we further that proposal, by
suggesting that grammatical lexical properties are
another dimension of recognition that have their own
way of interacting with biasing contextual information.

Second, our analysis is testing for the most dominant
neural response pattern that discriminates word class in
continuous speech. One possibility is that the same
neural pattern encodes bottom-up labels and top-
down labels, but bottom-up encoding is much weaker.
In this case, our analysis may only show evidence in
favour of the stronger top-down labels. In practice,
however, it seems unlikely that the brain would
encode two different sources of information under the
same coding scheme, because this runs the risk of cor-
rupting and mixing the two sources (Gwilliams et al.,
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2022). A second possibility is that top-down and bottom-
up labels are encoded in two equally strong but distinct
neural patterns. However, if this is the case, it does not
explain why our classifier trained on match trials is
unable to recover bottom-up labels when tested on mis-
match trials. Given our findings, it is possible that in con-
tinuous speech, the brain selectively accesses the
contextually-sensitive and lower-frequency represen-
tation of word class, and it does not represent the
higher-frequency but contextually irrelevant word class
label. Another possibility is that bottom-up information
about word class is encoded in parallel, in a distinct
and also much weaker pattern than top-down infor-
mation. Our attempt to test this statistically was incon-
clusive due to the low number of items in our study
with different top-down and bottom-up labels. Future
work should explore the possibility of parallel gramma-
tical processing by training a model on responses to
words out of context (putatively boosting the bottom-
up representation, because that is the only information
available) and training a model on responses to those
same words within context as we did here, putatively
boosting the top-down representation. Such an
approach would help to assess whether bottom-up
and top-down grammatical representations exist in par-
allel, or whether top-down representations enjoy exclu-
sive activation. In addition, it would be beneficial to
conduct a replication of our study using semantic ambi-
guity, rather than grammatical ambiguity, to compare
results directly using the same analytical protocol. We
hypothesise that semantic ambiguity would yield a
bottom-up-then-top-down sequence of representations,
in accordance with previous work on this topic.

Interestingly, although we did not find evidence for
bottom-up grammatical word class labels, we did find evi-
dence for the processing of bottom-up acoustic phonetic
input more generally. Specifically, we found that the two
sources of information were decodable in parallel through-
out phonetic processing, and at word onset the peak in
phonetic decoding is later (∼200 ms) than the peak in
grammatical class decoding (∼100 ms). This provides evi-
dence that bottom-up sensory information is indeed avail-
able to the processing system, but it is not the means by
which grammatical class labels are derived. Parallel proces-
sing of lower-level phonetic and higher-level lexical infor-
mation during continuous speech processing is in line
with recent MEG studies (Brodbeck et al., 2022; Heilbron
et al., 2022). These studies model the variability in predict-
ability of different sized units (e.g. phonemes and words)
based on different sized context windows, and they find
evidence for tracking of different sized constituents in par-
allel. One crucial difference between the current study and
these previous studies is that herewe aremodelling feature

representations directly, rather than the predictability of a
given representational outcome. The similarity between
our and these previous results, despite this crucial differ-
ence in approach, suggests that both prediction errors
and representational states are processed under a hierar-
chy of parallel processes, therefore supporting that parallel
computations are commonplace during continuous
speech processing.

A major implication of our results is that, in the eco-
logical task of story listening, the neural representation
of a lexical item encompasses not just information at
t0, but also information provided in previous time-
steps, in the form of context. Our results aid interpret-
ation of recent studies that use neural networks to
model language processing (Caucheteux & King, 2022;
Qian et al., 2016; Schrimpf et al., 2021). One key result
of this previous work is that artificial models do better
at predicting neural responses when they make use of
longer context windows (Caucheteux & King, 2021,
2022; Goldstein et al., 2022; Jain & Huth, 2018). Our
findings anchor a concrete interpretation of this result:
The boost in explanatory power is caused by incorporat-
ing contextual sentence-level information into the
lexical representations that are being cross-correlated.

In a similar vein, we also found that the processing of
word class of the current word is very long-lived, extend-
ing into the processing of subsequent words. We have
found similar results when analysing responses at the
phonetic level in previous work (Gwilliams et al., 2018,
2022). For the phonetic level of processing, we
propose that prolonged information encoding serves
to facilitate two operations. First, maintaining low-level
phonetic detail for a long period of time provides the
opportunity to re-analyse that information based on
the subsequent inputs that are received. For instance,
if a word initial sound is ambiguous between “b” and
“p”, but then the word resolves as “parakeet”, it is advan-
tageous to be able to integrate subsequent lexical infor-
mation with the sensory information of prior speech
sounds. Second, if the system has the capacity to main-
tain information over long time periods, this may be the
means by which higher order structure is composed
over time. In the case of phonetic processing, maintain-
ing a sequence of phonemes permits generation of
larger sub-lexical units such as syllables and morphemes.
Here we demonstrate similar longevity in lexical proces-
sing, whereby information is maintained past the point
that it has dissipated from the auditory input. We
propose that this serves to permit easy repair of lexical
interpretation based on subsequent input, and the
online construction of constituent structures over time.

In addition, we observe that word class decoding
reaches its maximum performance time-locked to
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word offset as compared to onset. While further work
should seek to test this explicitly, one explanation is
that word class is initially generated at word onset,
based on prior context, and gets stronger as phonetic
content of the word serves to confirm the initial
context-sensitive interpretation. This is also in line with
our spatial analysis (Figure 7), which shows that the
topography encoding word class evolves over time. It
is possible that contextual information becomes inte-
grated with the available congruent lexical information,
in order to form a grammatical representation which is
consistent with both the prior and current lexical inputs.

Taken together, our findings are inconsistent with the
classic view of language processing that assumes that
lower order properties of speech, closer to the sensory
signal, are processed first, and serially composed into
more complex abstract features over time. Here, we
show that during continuous speech processing,
higher-order grammatical information of speech pre-
cedes lower phonetic information, which is more akin
to a reverse hierarchy (Ahissar et al., 2009; Ahissar &
Hochstein, 2004). We see this explicitly in the temporal
difference between word class processing (∼100 ms)
and phonetic processing (∼200 ms). Concretely, this
means that in the sentence “MJ looked at the stars
using a…” upon hearing the word “telescope”, the
brain derives that this word is a noun, before it derives
that the word starts with a “t”. The reverse hierarchy
theory, as put forward for visual processing, suggests
that because higher order information is more robust
to ambiguity in the sensory signal, it is used to guide
processing and interpretation at the lower levels. We
posit that a similar process is happening here for the
case of speech processing: Higher order information
contained in the preceding language context serves to
inform interpretations at lower levels. This top-down
process may aid the processing of the low-level, and
generally more ambiguous, speech properties.
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