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Neural dynamics of phoneme sequences
reveal position-invariant code for content
and order

Laura Gwilliams 1,2,3 , Jean-Remi King 2,4, Alec Marantz2,3,5,7 &
David Poeppel2,6,7

Speech consists of a continuously-varying acoustic signal. Yet human listeners
experience it as sequences of discrete speech sounds, which are used to
recognise discrete words. To examine how the human brain appropriately
sequences the speech signal, we recorded two-hour magnetoencephalograms
from 21 participants listening to short narratives. Our analyses show that the
brain continuously encodes the three most recently heard speech sounds in
parallel, and maintains this information long past its dissipation from the
sensory input. Each speech sound representation evolves over time, jointly
encoding both its phonetic features and the amount of time elapsed since
onset. As a result, this dynamic neural pattern encodes both the relative order
and phonetic content of the speech sequence. These representations are
active earlier when phonemes are more predictable, and are sustained longer
when lexical identity is uncertain. Our results show howphonetic sequences in
natural speech are represented at the level of populations of neurons, pro-
viding insight into what intermediary representations exist between the sen-
sory input and sub-lexical units. The flexibility in the dynamics of these
representations paves the way for further understanding of how such
sequencesmay be used to interface with higher order structure such as lexical
identity.

Speech comprehension involves mapping variable continuous acous-
tic signals onto discrete linguistic representations1. Although the
human experience is typically one of effortless understanding, unco-
vering the computational infrastructure that underpins speech pro-
cessing remains a major challenge for neuroscience2 and artificial
intelligence systems3–5 alike.

Existing cognitive models primarily explain the recognition of
words in isolation6–8. Predictions of these models have gained
empirical support in terms of neural encoding of phonetic features9–12,
and interactions between phonetic and (sub)lexical units of

representation13–16. What is not well understood, however, is how
sequences of acoustic-phonetic signals (e.g. the phonemes k-a-t) are
assembled during comprehension of naturalistic continuous speech,
in order to retrieve lexical items (e.g. cat).

Correctly parsing auditory input into phoneme sequences is
computationally challenging for a number of reasons. First, there are
no reliable cues for when each meaningful unit begins and ends (e.g.
word or morpheme boundaries). Second, adjacent phonemes can
acoustically blend into one another due to co-articulation1. Third, the
same set of phonemes can form completely different words (e.g. pets

Received: 8 May 2020

Accepted: 19 October 2022

Check for updates

1Department of Neurological Surgery, University of California, San Francisco, USA. 2Department of Psychology, New York University, New York, USA. 3NYU
Abu Dhabi Institute, Abu Dhabi, UAE. 4École normale supérieure, PSL University, CNRS, Paris, France. 5Department of Linguistics, New York University, New
York, USA. 6Ernst Strüngmann Institute for Neuroscience, Frankfurt, Germany. 7These authors contributed equally: Alec Marantz, David Poeppel.

e-mail: leg5@nyu.edu

Nature Communications |         (2022) 13:6606 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-9213-588X
http://orcid.org/0000-0002-9213-588X
http://orcid.org/0000-0002-9213-588X
http://orcid.org/0000-0002-9213-588X
http://orcid.org/0000-0002-9213-588X
http://orcid.org/0000-0002-2121-170X
http://orcid.org/0000-0002-2121-170X
http://orcid.org/0000-0002-2121-170X
http://orcid.org/0000-0002-2121-170X
http://orcid.org/0000-0002-2121-170X
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-34326-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-34326-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-34326-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-022-34326-1&domain=pdf
mailto:leg5@nyu.edu


versus pest), which makes the order of phonemes—not just their
identity—critical for word recognition.

The neurophysiology of speech-evoked activity also poses prac-
tical challenges. Previous studies have shown that speech sounds elicit
a complex cascade of brain responses, spanning early auditory cortex,
parietal and prefrontal areas5,9,17. Critically, the neural responses to an
individual phonemeare long-lasting andgreatly exceed thedurationof
the phoneme itself11,16,18,19. For instance, Gwilliams et al. (2018) found
that properties of a speech sound are neurally encoded for more than
500ms after the speech sound has dissipated from the acoustic signal.
This phenomenon entails that a given phoneme is still encoded in
neural activitywhile subsequent phonemes stimulate the cochlea. How
does the brain reconcile auditory inputs that unfoldmore rapidly than
the associated neural processes?

To identify how the brain represents continuous sequences of
phonemes, we recorded 21 subjects with magneto-encephalography
(MEG) while they attentively listened to 2 h of spoken narratives. We
then use a combination of encoding and decoding analyses time-
locked to each phoneme onset to track how the brain represents past
and present phonetic features. In this work, we showhow the language
system (i) processes the phonetic features of multiple phonemes in
parallel; (ii) keeps track of the relative order of those phonemes; and
(iii) maintains information sufficiently long enough to interface with
(sub)lexical representations. Our findings shed light on how both
sequenceorder and phonetic content canbe accurately represented in
the brain, despite the overlapping neural processes elicited by con-
tinuous speech.

Results
Neural responses were recorded with magnetoencephalography
(MEG) while 21 participants listened to four short stories recorded
using synthesised voices fromMacOS text-to-speech. Each participant
completed two one-hour recording sessions, yielding brain responses
to 50,518 phonemes, 13,798words and 1,108 sentences per participant.
We annotated each phoneme in the story for its timing, location in the
word, as well as phonetic and statistical properties (Fig. 1A). The data
have been uploaded to a public repository20.

Phonetic feature encoding in acoustic and neural signals
How are speech features represented in brain activity? To address this
issue, we applied a two-step analysis. First, we dealt with the confound
of speech features being correlated with low-level properties of the
speech signal, such as pitch and intensity. We trained a temporal
receptive field (TRF) model to predict MEG data from the amplitude
envelope and pitch contour21, and used this model to regress from the
MEG signal all variance associated with these acoustic properties. All
subsequent analyses were applied to the residuals of this model, and
so can be interpreted with the potential confounds of loudness and
pitch being removed.

Second, to track the neural representations of linguistic features,
we fit a back-to-back regression (B2B)22 to (1) decode 31 linguistic
features from the residual MEG signal and (2) evaluate their actual
contribution to the corresponding decoding performance. This was
applied at each time sample independently. The suite of features
included 14 acoustic-phonetic features (binary one-hot encoding of
place, manner, and voicing), 3 information theoretic measures (sur-
prisal, entropy, and log sequence frequency), 8 unit boundary features
(onset/offset of words, syllables, morphemes) and 6 positional fea-
tures (phoneme and syllable location in syllable, word, and sentence).
All features were included in the model simultaneously. B2B was
chosen to control for the co-variance between features in the multi-
variate analysis while optimising the linear combination of MEG
channels to detect the encoding of information even in low signal-to-
noise circumstances22. We applied the same model separately to the
MEG signals (n = 208 channels) and to the acoustic signal (n = 208

frequency bands of the acoustic mel spectrogram, which approx-
imates the auditory signal after passing through the cochlea23).

The output of the B2B is a set of beta coefficients thatmap a linear
combination of ground truth features to the decoder’s predictions of a
feature. For explicit comparisonbetween the results usingmore classic
decoding metrics (AUC) and B2B regression coefficients, see Supple-
mentary Fig. 1. For reference, the average significant decoding accu-
racy is very modest, at around 51–52%, where chance level is 50%. The
effect sizes being dealt with here, therefore, are very small. But given
the number of phonemes presented to the participants, our results are
highly significant: allp < 10−4. The effect sizeswe report correspond to
the proportion of variance explained by each feature according to the
B2B model, and the relative noise ceiling estimate across all features.
The noise ceiling is estimated as themaximum amount of variance the
modelwas able to explain at any latency.We compute this by summing
beta coefficients across all features and taking themaximumover time.
Each feature timecourse is then normalised by this maximum perfor-
mance measure, to provide a proportion of variance explained (see
Methods).

An important theoretical point is that we are decoding features of
each phoneme rather than decoding phoneme categories per se.
However, when decoding phoneme categories instead of features, we
observe very similar results (see supplementary Fig. 14).

Figure 1B summarises the result of the neural analysis. Confirming
previous studies9,11,16, phonetic features were decodable on average
between 50–300ms from the MEG signal and accounted for 46.2% of
variance explained by the full suite of 31 features. Performance aver-
aged across featureswas statistically greater than chance, as confirmed
with a temporal permutation cluster test, based upon a one-sample t-
test (df=20) applied at each time-sample (p < 0.001; critical t averaged
over time = 3.61). Information theoretic measures such as surprisal,
entropy, and log sequence frequency accounted for 14.5% of explain-
able variance, which was also statistically better than chance on aver-
age (−10–540 ms; p <0.001; t = 2.98). Positional properties such as
location in the word explained 31% of variance, and showed the
greatest individual effect sizes (−120–600ms;p < 0.001; t = 5.61). Here,
phoneme order is coded the same for all phonemes regardless of
feature. Finding a significant effect of phoneme order therefore sug-
gests that order is represented independently fromphonemic content,
and is the same for all phonemes regardless of the features they con-
tain. The remaining variance was accounted for by boundary onset/
offset features (0–410ms; p < 0.001; t = 3.1).

Are the phonetic feature representations contained in the neural
signal similar to those contained in the auditory input? Fig. 1C shows
the result of the same B2B analysis, but now applied to the audio mel
spectrogram. Phonetic features accounted for 52.1% of the explainable
variance between 0–280ms (p <0.001; t = 9.56). We also observed
correlates of statistical information theoretic measures (−180–140ms;
p <0.01; t = 2.92) and phoneme position (−200–580 ms; p < 0.001;
t = 4.59). Phonetic features thatwere better decoded from the acoustic
signal were also better decoded from the neural signal (Spearman
correlation of average performance r = 0.59; p = 0.032). However,
there was no significant correlation between the decoding perfor-
mance of information theoretic measures or phoneme position across
the auditory and neural analyses (Spearman r =0.13; p =0.41), and
these features accounted for significantly more variance in theMEG as
compared to the auditory analysis (t = 2.82; p =0.012). Overall, this
analysis suggests that phonetic and statistical features of speech have
correlates with the acoustic signal, but that the decoding of higher-
order structure from neural responses cannot be explained by the
acoustic input alone.

Multiple phonemes are processed simultaneously
Our finding that the average duration of phonetic decodability is
around 300ms is important, because this greatly exceeds the average
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Fig. 1 | Experimental design and phoneme-level decoding. A Example sentence,
with the phonological annotation superimposed on the acoustic waveform. Col-
ours of the segments at the top half of the waveform indicate the phoneme’s
distance from the beginning of a word (darker red closer to word onset). The
spectrogram of the same sentence appears below the waveform. Five example
sensor residual time-courses are shown below, indicating that all recordings of the
continuous stories were recorded with concurrent MEG. B Timecourses of

decoding phoneme-level features from the MEG signal using back-to-back regres-
sion, time-locked to phoneme onset. Traces represent the average decoding per-
formance over the 21 participants, shading represents standard error of the mean
over participants. C Timecourses of decoding the same features from the mel
spectrogram. The y-axis represents portion of explainable variance given all fea-
tures in the model. Source data are provided as a Source Data file.
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duration of the phonemes in our stories (78ms, SD = 34ms). This
implies that the brain processes multiple phonemes at the same time.
To explicitly test how many phonemes are processed simultaneously,
we decoded, from the same MEG responses, the place, manner, and
voicing of the current and three preceding phonemes.We find that the
phonetic features of a 3-phoneme history can be robustly decoded
from an instantaneous neural response (see Supplementary Fig. 9).

To further assess whether this result implies that the brain can
retrieve the content of phoneme sequences, we simulated the neural
responses to continuous sequences of 4-phoneme anagrams using the
decoding model coefficients to reconstruct synthesised MEG respon-
ses (see Methods). Under ideal conditions (no added noise) neural
responses robustly encoded the history of four preceding phonemes
(Fig. 2B). This result confirms the high degree of overlapping content
during phoneme processing. Although decodability need not imply
that the brain actually uses this information24, this result indicates that
the brain has access to at least a 3-phoneme sequence at any given
processing time.

Phonetic feature representations are position invariant
Having demonstrated that the brain processesmultiple speech sounds
at the same time, the next question is: How does the brain do this
without mixing up the phonetic features of these speech sounds?
There are a number of potential computational solutions to this

problem.One is position-specific encoding, which posits that phonetic
features are represented differently depending onwhere the phoneme
occurs in aword. This coding scheme uses a different neural pattern to
encode information about the first phoneme position (P1), second
phoneme position (P2), etc., resulting in no representational overlap
between neighbouring speech sounds.

To test whether the brain uses this coding scheme, we trained a
decoder on the responses to phonemes in first position and evaluated
the model’s generalisation to other phoneme positions (Fig. 2C).
Contra to the predictions of a position-dependent coding scheme, we
found significant generalisation from one phoneme position to
another. A classifier trained on P1 significantly generalised to the pat-
tern of responses evoked by P2, P3, P-1 and P-2 from 20 to 270ms
(p < 0.001; t = 3.3), with comparable performance (max variance for
P2 = 26%, SEM=4%; P3 = 32%, SEM= 3%; P-1 = 23%, SEM= 3%, P-2 = 37%,
SEM=4%). This result contradicts a purely position-specific encoding
scheme, and instead supports the existence of a position-invariant
representation of phonetic features.

Interestingly, training and testing on the same phoneme position
(P1) yielded the strongest decodability (max = 71%, SEM= 5%), which
was significantly stronger thanwhen generalising across positions (e.g.
train P1 test P1 vs. train on P1 test on P2: 110:310ms, p =0.006). It is
unclear whether this gain in performance is indicative of position-
specific encoding in addition to invariant encoding, or whether it

Fig. 2 | Decoding as a function of phoneme position. A Timecourses of decoding
phoneme-level features from the mel spectrogram (black) and MEG sensors
(coloured), time-locked to phoneme onset. Performance is averaged over the 14
phonetic feature dimensions. Shading in the neural data corresponds to the stan-
dard error of themean across the 21 participants. Results are plotted separately for
10 different phoneme positions, where P1:P5 indicates distance from word onset
(red colour scale) and P-1:P-5 distance from word offset (purple colour scale). E.g.
P-1 is the last phoneme of the word, P-2 is the second to last phoneme of the word.
Y-axis shows the beta coefficients normalised between 0–1. All plots share the same
y-axis scale. B Result of simulating and reconstructing phoneme sequences from
the MEG model coefficients. x-axis represents how many previous phonemes can
be reconstructed; y-axis represents the cosine similarity between the true phoneme

sequence and the reconstruction. History lengths exceeding 4 phonemes corre-
spond to the phonemes of the previous word in the sequence. All positions with an
asterisk are significant at p <0.001, derived from comparing the true value to a
random permuted distribution. C Testing generalisation across phoneme posi-
tions. Grey trace shows average performance when training on phonemes at word
onset and testing on phonemes at word onset. Coloured traces show average
performancewhen training on phonemes atwordonset, and testing at second (P2),
third (P3), last (P-1) and second to last (P-2) phonemepositions. Shading represents
the standard error of the mean across participants. Y-axis is the noise-normalised
variance explained within the generalisation analysis. Source data are provided as a
Source Data file.
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reflects bolstered similarity between train and test signals due to
matching other distributional features. Future studies could seek to
match extraneous sources of variance across phoneme positions to
test this explicitly.

Phonetic representations rapidly evolve over time
The sustained, parallel and position-invariant representation of suc-
cessive phonemes leaves our original question unanswered: How does
the brain prevent interference between neighbouring speech sounds?

A second possible solution to this problem is that, rather than
embedding phonetic features within a different neural pattern
depending on phoneme location, phonetic features are embedded in
different neural patterns as a function of latency since phoneme onset.
This means that each speech sound travels along a processing trajec-
tory, whereby the neural population that encodes a speech sound
evolves as a functionof elapsedprocessing time. To testwhether this is
the case, we used temporal generalisation (TG) analysis25. This method
consists of learning themost informative spatial pattern for a phonetic
feature at a givenmoment, and assessing the extent towhich it remains
stable over time. TG results in a training × testing matrix that helps
reveal how a neural representation evolves over time. This analysis is
applied relative to phoneme onset.

To evaluate the extent of representational overlap across pho-
neme positions, we aligned the TG matrices relative to the average
latency between two adjacent phonemes. For example, relative to
word onset, phoneme P1 is plotted at t = 0, P2 at t = 80, P3 at t = 160,
and so on (Fig. 3). Note that the number of trials at test time decreases
as we test phoneme positions further from word boundaries, due to
differences in word length. P1 and P-1 are defined for 7335 trials per
participant per repetition, P2 andP-2 for 7332 trials, P3 andP-3 for 5302
trials, P4 and P-4 for 3009 trials, P5 and P-5 for 1744 trials. Models are
trained on all phonemes regardless of position (25259 per participant
per repetition). This encourages the model to learn the topographic
pattern which is common across phoneme positions.

While eachphonetic feature could be decoded for around 300ms
(train time== test time (diagonal axis), Fig. 3A), the corresponding
MEG patterns trained at each time sample were only informative for
about 80ms (marginal over train time (horizontal axis), Fig. 3A). This
discrepancy demonstrates that the neural representations of phonetic
features changes over time. We confirmed the statistical reliability of
this evolution using an independent samples t-test, comparing diag-
onal and horizontal decoding performance axes (df = 200,
p <0.001; t = 7.54).

This analysis demonstrates that the neural representation of
phonetic features indeed varies with latency since phoneme onset,
suggesting that the brain uses a dynamic coding scheme to simulta-
neously represent successive phonemes.

Dynamics encode the order of phonemes in sequences
The neural pattern that encodes phonetic features evolves with
elapsed time since phoneme onset. What purpose does this evolution
have?We sought to testwhether the evolution is systematic enough to
explicitly encode latency since the speech sound begun. If latency
information is indeed encoded along with phonetic detail, the con-
sequence would be an implicit representation of phoneme order in
addition to phoneme identity. This is because the brain would have
access to that fact that features of phoneme X occurredmore recently
than than phoneme X - 1, and those, more recently than phoneme
X - 2, etc.

To formally test this possibility, we cropped all phoneme-aligned
responses between 100 and 400ms and used ridge regression to
decode the latency since phoneme onset (see “Methods”). The
reconstructed latency significantly correlated with the true latency
(Pearson r =0.87, p <0.001; see Fig. 4A), suggesting that the dynamic
spatial topography encodes the time elapsed since phoneme onset, in

addition to phonetic content. This thus distinguishes sequences
composed of the same phonemes such as ‘pets’ versus ‘pest’, because
the features of the speech sounds are time-stamped with the relative
orderwithwhich they entered into the system. A crucial question to be
addressed in future work is whether behavioural confusions in lan-
guage perception arise from errors in these time-stamps.

Dynamic coding separates successive phonetic representations
Next we asked whether another purpose of this dynamic coding
scheme is to minimise overlap between neighbouring speech-sound
representations. To test this, we quantified the extent to which suc-
cessive phonemes are simultaneously represented in the same neural
assemblies.

We extracted all time samples across train and test time where
decoding performance exceeded a p <0.05 threshold, Bonferroni-
corrected across the 201 time samples of a single processing time. This
is equivalent to a statistical t threshold > 4, an effect size threshold
variance explained > 5%, and decoding AUC>0.507, as represented by
the darker contour in Fig. 3. We then compared the number of sig-
nificant time-points shared within and across phoneme positions. On
average, 7.3% of time-points overlapped across phoneme positions
(SD = 9%). The majority of overlap was caused by the first phoneme
position, which shared 20% of its significant time-samples with the
preceding phonemes, and reciprocally, the last phonemewhich shared
27.9% of its time-samples with the subsequent (as can be seen in the
left-sided appendage that overlaps with the last phoneme of the pre-
vious word). When removing the first and last phonemes from the
analysis, this overlap drops to just 3.1% (SD = 3.2%).

Overall, these results show that while multiple phonemes are
processed in parallel, any given pattern of neural activity only repre-
sents the features of one phoneme at a time, granting each phoneme
an individuated representation. This avoids representational overlap
between the phonetic features of neighbouring speech sounds. Future
work would benefit from linking behavioural difficulty in speech
comprehension with the extent of representational overlap, to assess
the existence of a causal relationship.

Dynamic representations are absent from audio spectrograms
Is this dynamic coding scheme also present in the auditory signal, and
so all of this comes for free by virtue of speech being a dynamic input?
Or, is dynamic encoding the result of a specific transformation the
brain applies to that input? To address this issue, we applied the TG
analysis to the audio mel spectrogram. We found no statistical differ-
ence between the accuracy time-course of a single decoder as com-
pared to independent decoders at each time sample (p = 0.51;
t = −0.67). The ‘square’ shape of the TG matrix suggests that acoustic
signals contain stationary cues for acoustic-phonetic features (see
Supplementary Fig. 7). We applied the overlap analysis to the auditory
signal, using the same statistical threshold to identify relevant time-
samples. On average, 92.5% of time-samples overlapped across posi-
tions (SD = 12.3%). This remained similar when removing the first and
last phonemes from the analysis (mean = 91%, SD = 13.3%). The repre-
sentational overlap in auditory encoding was significantly greater than
neural encoding (t = −21.3, p <0.001). We also confirmed that this
overlap was qualitatively similar in different signal-to-noise ratio
simulations (see Supplementary Fig. 2).

Together, these results demonstrate that the dynamic coding
schemewe observe in neural responses is not a trivial reflection of the
acoustic input. Rather, it is the consequence of an active process the
brain applies to the relatively static auditory representations.

MEG topographies associated with phonetic representations
To clarify the spatial underpinning of these dynamic representations,
we analysed the beta coefficients of the decoding model when with-
holding regularisation (see “Methods”). One important question is
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whether phonetic representations remain spatially local, and evolve
within auditory regions, or whether they shift globally over space; for
example, from auditory to frontal cortices.

Figure 4B displays the temporal evolution of the MEG topo-
graphies associatedwith themost robustly encodedphonetic features.
We quantified the extent of spatial evolution over time by projecting

the coefficients onto orthogonal axes of the sensor array (front/back,
left/right) and computing the extent of temporal structure (see
Methods for details).

Overall, we find that activity which encodes phonetic detail
remains local within auditory regions, in contrast to the representation
of phoneme position which followed a clear posterior-anterior
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Fig. 3 | Phonetic feature processing across the sequence. A Temporal general-
isation (TG) results superimposed for 10 phoneme positions. Results represent
decoding performance averaged over the 14 phonetic features. From the first
phoneme in aword (P1, dark red)moving forwards, and the last phoneme in aword
(P-1, dark blue)moving backwards. The result for each phoneme position is shifted
by the average duration from one phoneme to the next. The y-axis corresponds to
the time that the decoder was trained, relative to phoneme onset. The x-axis cor-
responds to the time that the decoder was tested, relative to word onset. Contours
represent a t-value threshold of 4 (darker lines) and 3.5 (lighter lines). Note that

fewer trials are entered into the analysis at later phoneme positions because words
contain different numbers of phonemes. This is what leads to the reduction of
decoding strength at p5 and p-5, for example. B Decoding performance of just the
diagonal axis of each phoneme position (where train times are equal to test times).
The visualisation therefore represents when phonetic information is available,
regardless of the topography which encodes it. We use a stack plot, such that the
variance explained by different phoneme positions is summed along the y-axis.
Source data are provided as a Source Data file.

Fig. 4 | Spatial evolution of processing trajectory. A Reconstructing time since
phoneme onset from 15 equally spaced samples from 100 to 400ms. The hor-
izontal dashed line indicates mean of time latency (i.e. what would be recon-
structed in absence of evidence to the contrary). The coloured dots represent the
21 participants at a given time sample. B Decoding model coefficients plotted as
topographies (above) and trajectories (below)over time. Coefficients are shown for
the decoding of three phonetic features and phoneme position. Phoneme onset is
shown in the darkest purple (0ms) and colours shift towards yellowas a function of

time. Contourson the topographies highlight 90%percentile coefficientmagnitude
at 100ms increments. Trajectories below represent the cosine distance between
the coefficient topography and a binary posterior/anterior mask (y-axis) and a
binary left/right mask (x-axis). Overall the results show that the topographies
evolve over time, where phonetic features remain concentrated around auditory
cortex, and phoneme position takes an anterior path from auditory to frontal
cortices. Source data are provided as a Source Data file.
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gradient. Both of these neural patterns encoding phonetic features
exhibited significantly more structured movement over time than a
null trajectory (p <0.001). Given that the brain has simultaneous
access to phoneme content and elapsed processing time, the coupling
of these trajectories permits simultaneous read-out of both the iden-
tity and the relative order of a speech sound in a sequence from any
given spatial pattern of activity.

Representations evolve at the rate of phoneme duration
Although phonetic features are present in neural responses for around
300ms (length of the decoding diagonal in Fig. 3A), any given spatial
pattern of activity which encodes that information (width of the
decoding diagonal) is informative for much shorter than that – about
80ms. We noted that 80ms is very similar to the average duration of
thephonemes in our stories (M = 78ms, SD = 34ms). A crucial question
is whether the speed of evolution is fixed, or whether it scales with
phoneme duration and speech rate.

We grouped trials into quartiles and analysed brain responses to
the shortest and longest phonemes (∼4500 trials in each bin; mean
duration 45 and 135ms, respectively). We tested whether there was a
significant difference in the duration of generalisability between
these two groups of trials, whereby shorter generalisation
indicates faster spatial evolution, and longer generalisation
slower spatial evolution. We found that longer phonemes general-
ised for an average 56ms longer than shorter phonemes (p = 0.005;
t = −2.6) (Fig. 5A), suggesting that phoneme duration is indeed an
important factor for how quickly a spatial pattern evolves during
processing.

In addition, we observed a small but robust deflection in the angle
of the decoding diagonal. If a processing trajectory moves faster than
the training data, it will have an angle of less than 45 degrees. Slower
trajectories will have an angle greater than 45 degrees. Using principal
component analysis to find the axis of greatest variance, we found that
shortest phonemes had an average angle of 42.3 degrees, whereas the
longest phonemes had an average angle of 47.1. This difference was
statistically significant when applying an independent samples t-test
between short and long phonemes across participants (df = 20,
t = 2.56, p =0.013).

This pattern suggests that the brain adapts its speed of pro-
cessing as a function of the rate of speech input, to ensure that
approximately the same number of phonemes are encoded at a given
test time while minimising representational overlap. This potentially
supports the conjecture that the brain preferentially derives higher
order structure by a computing sliding triphone sequences from the
speech input.

Phonetic representations vary with linguistic processing
To what extent do the neural representations of phonetic features
inform linguistic processing? To address this question, we next tested
whether the dynamics of phonetic representations systematically vary
with (i) word boundaries, (ii) surprisal, and (iii) lexical identification.

We evaluated decoding performance at word boundaries: word
onset (position P1) and word offset (position P-1) separately for each
family of phonetic features (place of articulation, manner, and voi-
cing). Phonetic features were decodable later at word onset than off-
set, yielding a significant difference during the first 250ms (p’s <0.03
for all features). When averaging decoding performance across pho-
netic features, the lag between neural and acousticmaximumaccuracy
was 136ms (SD = 13ms) at word onset, which reduced to 4ms (SD =
13ms) at word offset (see Fig. 2A). This average onset/offset latency
difference was statistically significant (t = −3.08; p = 0.002). Further-
more, place and voicing features were sustained in the neural signal
significantly longer for phonemes at the beginning of words as com-
pared to the end, which was also true when averaging over all features
(p < 0.001, t = −3.79, 328–396ms) (see Fig. 3).

Is this latency shift purely lexical in nature, or could statistical
properties of speech sounds at word boundaries explain the result? In
general, and in our speech stimuli, phonemes at the beginning of
words are less predictable than phonemes at the end of words. We
testedwhether expected phonemes could be decoded earlier from the
neural signal than unexpected ones by grouping trials as a function of
surprisal. To control for co-linearity between word-boundaries and
surprisal, we selected all phonemes that were not at word onset, and
tested decoding accuracy relative to quartile phoneme surprisal (see
Methods for details on how this variable was computed). Each analysis
bin contained ∼4500 trials. If the shift in latency is purely a word-
boundary effect, we should observe no latency difference as a function
of non-onset phoneme surprisal.

We observed a systematic latency shift as a function of surprisal
(Fig. 5B): more predictable phonemes were decoded earlier than less
predictable ones, leading to a significant difference between low and
high surprisal from 120–132ms (p =0.007). Surprisal did not sig-
nificantly modulate peak decoding accuracy (all uncorrected p-
values > 0.2).

This result suggests that the brain initiates phonetic processing
earlier when the phoneme identity is more certain. This result at least
partially, and potentially fully, explains the latency shift at word
boundaries.

Our results suggest that the temporal dynamics of phonetic pro-
cessing aremodulatedby certainty about the phonemeunitbeing said.
Does this extend to certainty about word identity, such that phonetic

Fig. 5 | Manipulating axes of sequence dynamics. We find that different prop-
erties of the speech input modulate decoding latency, width and angle. A TG
analysismedian split into phoneme length: short (average 45ms) and long (average
135ms). Contour inlay represents the borders of the significant temporal clusters at
p < 0.001, derived from a non-parametric randomised permutation procedure.
Waveforms represent a horizontal slice at 140ms (shown as a dashed line in the
contour plot). B Analysis on all non-onset phonemes split into median surprisal,
along the diagonal plane (slice shown in contour plot). Highlighted areas show

significant temporal clusters that distinguish low and high surprisal, derived from a
permutation cluster test (exact p-value 0.007). C Analysis on all non-onset pho-
nemes split intomedian cohort entropy, also along the diagonal plane. Highlighted
areas show significant temporal clusters between low and high entropy, derived
from a permutation cluster test (exact p-values .002 and 0.02). Shading on the
waveform of all plots represents standard error of the mean across the 21 partici-
pants. *p <0.05; **p < .01; ***p <0.001, when comparing true values to 1000 random
permuted test statistics. Source data are provided as a Source Data file.
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representations are maintained until higher order structure can be
formed?

We quantified word uncertainty using lexical cohort entropy26. If
many words are compatible with a given phoneme sequence with a
similar likelihood, then lexical entropy is high. On the contrary, if only
one word is likely given a specific phoneme sequence (which is more
often the case towards word offset), then lexical entropy is low. We
evaluated whether decoding performance between 300–420ms (the
window that showed the word onset/offset effect) varied with lexical
entropy (Fig. 5C). We grouped trials based on lexical entropy, and ran
the analysis on all phonemes that did not occur at word onset (∼4500
trials per bin). In the window of interest, higher entropy phonemes
were decoded with significantly higher performance (304–328ms,
p =0.002, t = −2.12). This suggests that phonetic information is main-
tained for longer in cases of higher lexical uncertainty.

When we expand the analysis window to the entire 0–500ms
epoch with a lower cluster-forming threshold, we find that lexical
entropy significantly modulates phonetic decoding from 200–420ms
p =0.016, t = −2.61). This is a reasonable time-frame within which lex-
ical entropy could exhibit an effect, and matches the time-frame of
entropy reduction in our stimulus materials remarkably well. The
average entropy of the low-entropy bin was 1.19 bits, which on average
occurs 333ms into a word (SD = 158ms). The average entropy of the
high-entropy bin was 4.3 bits, which on average occurs 108ms into a
word (SD = 51ms). This thereforemeans that the average timebetween
a phoneme in the high entropy bin and low entropy bin was 225ms,
which matches the duration of the entropy modulation effect in our
data (220ms). This in turn suggests that phonetic detail is maintained
until lexical ambiguity is sufficiently reduced.

In a separate analysis, we testedwhetherword lengthplayed a role
in the maintenance of phonetic detail of the onset phoneme. We
compared decoding performance of word-onset phonemes grouped
intomedian word length (shorter mean length = 2.54 phonemes; 4058
trials; longer mean length = 5.2 phonemes; 2841 trials). No significant
differences between groups were found (all clusters p > 0.2, dura-
tion <2ms).

Overall, our results confirm that the neural representations of
phonemes systematically vary with lexical properties.

Discussion
Howthebrainprocesses sequences is amajor neuroscientificquestion,
fundamental to most domains of cognition27,28. Precise sequencing is
particularly vital and central in speech comprehension: Sensory inputs
are transient and unfold rapidly, yet themeaning they conveymust be
constructed over long timescales. Whilemuch is known about how the
features of individual sounds are processed9,11, the neural representa-
tion of speech sequences remains largely unexplored.

Here we analyse neural responses of human participants listening
to natural stories, and uncover three fundamental components of
phonetic sequencing. First, we add specificity to the claim that the
brain does not process and discard inputs at the same rate with which
new inputs are received16. Namely, we find that the phonetic repre-
sentations of the three most recently heard phonemes are maintained
in parallel. Second, we show how the brain reconciles inputs that
unfold faster than associated neural processing: The content of a
speech sound is jointly encodedwith the amount of time elapsed since
the speech sound began. This encoding scheme is what allows the
brain to represent the features ofmultiple phonemes at the same time,
while housing themwithin distinct activity patterns. Third, we observe
that the timing of initiation and termination of phonetic processing is
not fixed. Rather, processing begins earlier for more predictable
phonemes in the sequence, and continues longer when lexical identity
is uncertain. This has the critical implication that phonetic processing,
phoneme sequence processing and lexical processing are engaged in
continuous interaction. Our results provide insight into the temporal

dynamics of auditory sequence representations and associated neural
computations, and pave the way for understanding how such
sequences in speech index higher order information such as lexical
identity.

Our analyses show that speech sound properties are neurally
represented for much longer than the sensory input, permitting the
auditory system access to the history of multiple (at least three—our
lower bound estimate) phonemes simultaneously. Crucially, the
activity pattern encoding these features evolves, systematically, as a
function of elapsed processing time, which prevents consecutive
speech sounds from co-occupying the same activity pattern. This
neural coding scheme grants two computational advantages. First, it
serves to avoid representational overlap between neighbouring
speech sounds, thus preserving the fidelity of the content of phonetic
representations. Second, the systematic spatial evolution of the neural
pattern encodes amount of time since speech sound onset, and
therefore the relative location of that sound in the sequence. The
encoding of phonetic content regardless of order, and order regard-
less of content, allows the brain to represent running sequences of
speech sounds. This phonetic trigram is a candidate intermediate
representation between phonetic features and stored (sub)lexical
representations.

Joint content-temporal coding resonates with recent evidence
for dedicated temporal codes in rat hippocampus29 and in the human
visual system30. The processing trajectory we find for human speech
processing did not trace a wide spatial path across distinct regions.
Instead, phonetic features remained locally encoded within auditory
regions for around 100–400ms, and the trajectory was different for
different features. This suggests that information may be locally
changing its population-level configuration within the auditory cor-
tices rather than following a strict anatomical transposition from low
to high level areas5,12,30. Unfortunately, the signal strength of our
single trial estimates, and the spatial resolution of MEG, limits the
specificity of the spatial claims we can make based on these data.
Future work will thus be critical to clarify how the location and
configuration of these responses changes as a function of
processing time.

Finding that phonetic content is encoded similarly at different
phoneme positions rules out a number of competing hypotheses for
howsequences areneurally represented. First, it is difficult to reconcile
these results with an explicit sequence representation. For example, if
the brain represents the sequence of all elapsed phonemes as a whole,
the representation of phoneme X at word onset would generalise
poorly to third positionABXand evenworse to sixth position ABCDEX.
Second, under the same logic, this result rules out the idea that pho-
nemes have a purely context-dependent encoding scheme, such as
being represented along with their co-articulatory neighbours as with
‘Wickelphones’31. In that case, phoneme X would have a different
representation in the context AXB and VXY. Finally, generalisability is
inconsistent with position-specific encoding accounts, such as edge-
based schemes32,33, which would posit that X is encoded differently in
ABX and XBC. While it is possible that multiple representational sys-
tems co-exist, our results support that at least one of those encoding
schemes is context-independent, which encodes content regardless of
lexical edges or phoneme neighbours.

Several aspects of our results suggest that the neural repre-
sentations of phonetic features directly interact with high-level lin-
guistic processing. First, the encoding of phonetic features is
systematically delayed as a function of phonological uncertainty
(surprisal) and systematically sustained as a function of lexical uncer-
tainty (cohort entropy). These latency shifts fit with models of pre-
dictive coding34,35 and analysis-by-synthesis36: when predictability for a
phoneme is high, processes can be initiated earlier (perhaps in some
cases before the sensory input) than when the phoneme identity is
unknown. While previous work has shown that processing of the
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speech signal is sensitive to phoneme probability within a word13,15,37–39

(see26 for a review), here we quantify the consequences this has for
encoding the phonetic content of those phonemes. Processing delays
may serve as a compensatorymechanism to allowmore information to
be accumulated in order to reach the overall same strength of
encoding40,41. Future work should test whether this local (within-word)
predictability metric has similar consequences to global (across-word)
metrics.

Second, phonetic features of the sequence are maintained
longer during lexical ambiguity. While previous work has shown
active maintenance of phonetic information16, here we provide evi-
dence that maintenance is dynamic and scales with certainty over
higher-order units. This result not only highlights the flexibility of
speech processing but also demonstrates the bi-directional interac-
tion between hierarchical levels of processing. Our results suggest
that acoustic-phonetic information is maintained until (sub)lexical
identity meets a statistically-defined threshold, providing clear pro-
cessing advantages in the face of phonological ambiguity and lexical
revision16. Future work would benefit from evaluating whether pho-
netic maintenance is implemented as a general working memory
mechanism42,43, in order to relate speech processing to the human
cognition more broadly. Furthermore, our understanding would
benefit from testing whether the target representations are lexical or
morphological in nature, as well as orthogonalising lexical entropy
and word-internal disambiguation points (i.e. when entropy reduces
to zero) to more precisely quantify the temporal relationship with
information maintenance.

Our study has several shortcomings that should be addressed in
future work. First, the poor signal-to-noise ratio of single-trial MEG
lead to very low decoding performances in our results—peaking only
1–2% greater than chance in most cases, on average. The results we
report are detectable because we collected responses to thousands
of speech sounds. This limits our ability to make claims about the
processing of specific speech features, within specific contexts,
which do not occur often enough in our dataset to sufficiently eval-
uate. Future work would benefit from recording a greater number of
repetitions of fewer speech sounds to allow for signal aggregation
across identical trials. Second, the spatial resolution and the signal-
to-noise ratio of MEG remain insufficient to clearly delineate the
spatial underpinning of the dynamic encoding scheme. Under-
standing how the location and configuration of neural responses to
speech sounds evolves as a function of elapsed processing time will
require data with both high spatial and temporal resolution, such as
electro-corticography recordings from the cortical surface. Finally, in
part to address the first limitation, we chose a passive listening
paradigm, in order to optimise the number of trials we could obtain
within a single recording session. This prohibits us from associating
decoding performance with behaviour and task performance, which
is a key next step for understanding the link between speech repre-
sentations and speech understanding. A number of interesting
hypotheses can be tested in this regard. For instance, are lapses in
comprehension explained by poorer decoding of phonetic input? If
the brain fails to transform information fast enough along the pro-
cessing trajectory, does this lead to predictable errors in perception
due to overlapping representations? Causally relating the repre-
sentational trajectories we observe to successful and unsuccessful
comprehension will be critical for further understanding the role of
these computations for speech processing.

Our results inform what computational solution the brain
implements to process rapid, overlapping phoneme sequences. We
find that the phonetic content of the unfolding speech signal is
jointly encoded with elapsed processing time, thus representing
both content and order without relying on a position-specific coding
scheme. The result is a sliding phonetic representation of the most
recently heard speech sounds. The temporal dynamics of these

computations are flexible, and vary as a function of certainty about
both phonological and lexical identity. Overall, these findings pro-
vide a critical piece of the puzzle for how the human brain parses and
represents continuous speech input, and links this input to stored
lexical identities.

Methods
Ethical regulations
Our research was approved by the IRB ethics committee at New York
University Abu Dhabi.

Participants
Twenty-one native English participants were recruited from the NYU
AbuDhabi community (13 female; age:M = 24.8, SD = 6.4). All provided
their informed consent and were compensated for their time at a rate
of 55 Dirhams per hour. Participants reported having normal hearing
and no history of neurological disorders. Each participant participated
in the experiment twice. Time between sessions ranged from 1 day to
2 months.

Stimulus development
Four fictional stories were selected from the Open American National
Corpus44: Cable spool boy (about two bothers playing in the woods);
LW1 (sci-fi story about an alien spaceship trying to find its way home);
Black willow (about an author struggling with writer’s block); Easy
money (about two old friends using magic to make money).

Stimuli were annotated for phoneme boundaries and labels using
the ‘gentle aligner’ from the Pythonmodule lower quality. Prior testing
provided better results for lower quality than the Penn Forced
Aligner45.

Each of the stories were synthesised using the Mac OSX text-to-
speech application. Three synthetic voices were used (Ava, Samantha,
Allison). Voices changed every 5–20 sentences. The speech rate of the
voices ranged from 145–205 words per minute, which also changed
every 5–20 sentences. The silence between sentences randomly varied
between 0–1000ms.

Procedure
Stimuli were presented binaurally to participants though tube ear-
phones (Aero Technologies), at a mean level of 70 dB SPL. We used
Presentation software to present the stimulus to participants (Neuro
Behavioural Systems). The stories ranged from 8–25min, with a total
running time of ∼1 h. Before the experiment proper, every participant
was exposed to 20 s of each speaker explaining the structure of the
experiment. This was designed to help the participants attune to the
synthetic voices.

The order of stories was fully crossed using a Latin-square design.
Participants heard the stories in the same order during both the first
and second sessions.

Participants answered a two-choice question on the story content
every ∼3min. For example, one of the questions was ‘what was the
location of the bank that they robbed’? The purpose of the questions
was to keep participants attentive as well as to have a formal measure
of engagement. Participants responded with a button press. All parti-
cipants performed this task at ceiling, with an accuracy of 98%.

MEG acquisition
Marker coils were placed at five positions to localise each participant’s
skull relative to the sensors. These marker measurements were
recorded just before and after the experiment in order to track the
degree of movement during the recording.

MEG data were recorded continuously, using a 208 channel axial
gradiometer system (Kanazawa Institute of Technology, Kanazawa,
Japan), with a sampling rate of 1000Hz and an online low-pass filter of
200Hz and a high-pass filter of 0.01 Hz.
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Preprocessing MEG
The raw MEG data were noise reduced using the Continuously Adjus-
ted Least Squares Method (CALM: (Adachi et al., 2001)), with
MEG160 software (Yokohawa Electric Corporation and Eagle Tech-
nology Corporation, Tokyo, Japan).

We used a temporal receptive field (TRF) model to regress from
the raw MEG data responses that were sensitive to fluctuations in the
pitch and envelope of the acoustic speech signal. We used the
ReceptiveField function fromMNE-Python46, using ridge regression as
the estimator. We tested ten lambda regularisation parameters, log-
spaced between 1–6 and 1 + 6, and picked the model with the highest
predictive performance averaged across sensors. MEG sensor activity
at eachms wasmodelled using the preceding 200ms of envelope and
pitch estimates. Both the acoustic and MEG signals were processed to
have zero mean across frequency bands and sensors respectively, and
scaled to have unit variance before fitting the model. MEG acoustic-
based predictions were then transformed back into originalMEG units
before regressing out of the true MEG signals. This process, including
fitting hyper-parameters, was applied for each story recording and for
each participant separately, across 3 folds. Because all analyses are fit
on these residual data, we can interpret our results knowing that they
cannot be accounted for by low-level acoustic attributes such as the
acoustic amplitude.

The data were bandpass-filtered between 0.1 and 50Hz using
MNE-Python’s default parame- ters with firwin design46 and down-
sampled from 1000Hz to 250Hz. Epochs were segmented from
200ms pre-phoneme onset to 600ms post-phoneme onset. No
baseline correction was applied. Our results are not dependent upon
the filter applied.

Preprocessing auditory signals
We computed a time-frequency decomposition of the auditory signals
by deriving a mel spectrogram representation using the Python
module librosa (version 0.8.0). We applied a 2048 sample Hamming
window to the auditory waveform, with a 128 sample overlap between
successive frames. We derived a power estimate at each of 208 fre-
quency bands (analogous to the 208MEG channels) using non-linearly
spaced triangular filters from 1–11250Hz. These data were then also
downsampled to 250Hz, and segmented from200–600ms in order to
match the dimensionality and size of the MEG epochs. No baseline
correction was applied.

We also tried using 50 linearly spaced frequency bands, and this
did not change the interpretation of our acoustic analyses.

Modelled features
We investigated whether single-trial sensor-level responses varied as a
function of fourteen binary phonetic features, as derived from the
multi-value feature system reported in47. Note that this feature system
is sparse relative to the full set of distinctive features that can be
identified in English; however, it serves as a reasonable approximation
of the phonemic inventory for our purposes.

Voicing. This refers to whether the vocal chords vibrate during
production. For example, this is the difference between b versus p and
z versus s.

Manner of articulation. Manner refers to the way by which air is
allowed to pass through the articulators during production. Here we
tested five manner features: fricative, nasal, plosive, approximant,
and vowel.

Place of articulation. Place refers to where the articulators (teeth,
tongue, lips) are positioned during production. For vowels, this con-
sists of: central vowel, low vowel, mid vowel, high vowel. For con-
sonants, this consists of: coronal, glottal, labial and velar.

Nuisance variables. In the same model, we also accounted for
variance explained by ‘nuisance variables’ – i.e. structural and statis-
tical co-variates of the phonemes. Though we were not interested in

interpreting the results of these features, we included them in the
model to be sure that they did not account for ourmain analysis on the
phonetic features. These features included: primary stress, secondary
stress, frequency of the phoneme sequence heard so far, suffix onset,
prefix onset, root onset, syllable location in the word, and syllable
onset. These features were extracted from the English Lexicon
Project48.

Subset variables. Throughout the analysis, we subset trials based
on their relationship to: word onset, word offset, surprisal, entropy,
distance from onset, distance from offset.

Surprisal is given as:

P p∣Cð Þ= f pð Þ
P

p2C
f pð Þ ð1Þ

and cohort entropy is given as

�
X

w2C
P w∣Cð Þlog2P w∣Cð Þ ð2Þ

where C is the set of all words consistent with the heard sequence of
phonemes thus far, and f(w) is the frequency of the wordw and f(p) is
the frequency of the phoneme p. Measures of spoken word frequency
were extracted from the English Lexicon Project48.

Decoding
Decoding analyses were performed separately on the acoustic signal
and on the neural signal. For the acoustic decoding, the input features
were the power estimates at each of the 208 frequency bands from
1–11,250Hz. For the neural decoding, the input features were the
magnitude of activity at each of the 208 MEG sensors. This approach
allows us to decode from multiple, potentially overlapping, neural
representations, without relying on gross modulations in activation
strength49.

Because some of the features in our analysis are correlated with
one another,we need to jointly evaluate the accuracyof eachdecoding
model relative to its performance in predicting all modelled features,
not just the target featureof interest. This is because, if evaluating each
feature independently, we will not be able to dissociate the decoding
of feature f from the decoding of the correlated feature f̂ .

Note that encoding models do not suffer from this issue, as they
automatically disentangle the specific contribution of co-varying
factors50. However, encoding models can be challenged by the low
signal-to-noise of MEG, where each channels only capture a minute
amount of signal, and where signals are best detected from a linear
combination of MEG sensors.

To overcome the issue of feature co-variance, while still capita-
lising on the advantages of decoding approaches, we implemented a
back-to-back (B2B) ridge regressionmodel51. Thismodel involves a two
stage process.

In short, B2B consists of both a decoding and an encoding step: (1)
the decoding model G f aims to find the combination of channels that
maximally decode feature f and (2) the encoding model Hf estimates
whether the decoded predictions f̂ are specific to f and/or attributable
to other, covarying, features.

To implement B2B, we first fit a ridge regression model on a
random (shuffled) 50% split of the epoched data. A decodingmodelℛ
Gf ∈ℛC was trained across the C = 208 MEG channels for each of the
F = 31 phonetic features independently at each of 201 time-points in
the epoch. That is, we train and test a unique decoder at each time
sample. The mapping was learnt between the multivariate input
(activity across sensors) and the univariate stimulus feature (one of the
31 features described above). All decoders were fit on data normalised
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by the mean and standard deviation in the training set:

argminG

X

i

ðyi � GTXiÞ2 +αG∣G∣
2

ð3Þ

where yi ∈ {±1} is the feature to be decoded at trial i and Xi is the
corresponding MEG activity. The l2-regularisation parameter αG was
also fit, testing 20 log-spaced values from 1−5 to 15. This was
implemented using the RidgeCV function in scikit-learn52.

Then, we use the remaining 50% split of data to train the encoder
H ∈ ℛF for each of the decoded features. To do this, we fit a second
ridge regression model to estimate the coefficients that map the true
features onto the decoded features:

argminH

X

i

ðY i � HTGTXiÞ
2
+αH ∣H∣2 ð4Þ

where Y i ∈ {±1} are the true features of a given phoneme at trial i and
GT Xi = Ŷ i is the features decoded from the MEG at that trial. Again, a
regularisation parameter αH was learnt for this stage with RidgeCV.

This second step of B2B allows the models to estimate whether
the decoded features f is solely explained by its covariates. In
particular51, showed that, under Gaussian and heteroscedasticity, the
Hf , tends a positive value if and only if f is linearly and specifically
encoded in the brain activity and not reducible to its covarying
features.

From this, we use the “beta” coefficient that maps the true sti-
mulus feature to the predicted stimulus feature (diag(H)) as ametric of
specific decoding performance. If a stimulus feature is not encoded in
neural responses (the null hypothesis) then there will be no reliable
mapping between the true feature y and themodel prediction ŷ. Thus,
the beta coefficient will be indistinguishable from zero – equivalent to
chance performance. If, however, a feature is encoded in neural
activity (the alternative hypothesis), we should uncover a significant
relationship between y and ŷ, thus yielding an above-zero beta
coefficient.

This procedure was applied at all possible train/test time combi-
nations for each time sample from −200 to 600ms relative to pho-
nemeonset. For the results shown in Figs. 1, 2 and4, we just analyse the
beta coefficients where the train time is equal to test time (the ‘diag-
onal’). Whereas the analyses shown in Figs. 3 and 5 use the full
2-dimensional timecourse of decoding performance.

The train/test split was performed 100 times, and the beta-
coefficients were averaged across iterations. This circumvents the
issue of unstable coefficients when modelling correlated variables.
These steps were applied to each participant independently.

Proportion of variance explained
To aid interpretability of our effect sizes, we computed the proportion
of variance explained for each feature. To obtain this measure, we
analyse the beta coefficients that map each true feature f to the target
feature at each time sample t. Specifically, we first compute a noise
ceiling, by summing the beta coefficients across all features, and taking
the maximum value at any latency:

R̂
f
ceiling =maxt

Xf = 31

f = 1

βf ð5Þ

R̂ceiling thus represents the upper limit of variance our model can
explain, taking all features together. We then normalise the beta
coefficient time-courses of each feature by this upper limit value:

R̂ = R̂B2B=R̂ceiling ð6Þ

The result is a proportion of variance explained, relative to the
contribution of all features in the model.

Temporal generalisation decoding
Temporal generalisation (TG) consists of testing whether a temporal
decoder fit on a training set at time t can decode a testing set at time t′25.
This means that rather than evaluating decoding accuracy just at the
time sample that the model was trained on, we evaluate its accuracy
across all possible train/testing time combinations. TG can be sum-
marised with a square training time × testing time decoding matrix. To
quantify the stability of neural representations, we measured the dura-
tion of above-chance generalisation of each temporal decoder. To
quantify the dynamics of neural representations, we compared the
mean duration of above-chance generalisation across temporal deco-
ders to the duration of above-chance temporal decoding (i.e. the diag-
onal of the matrix versus its rows). These two metrics were assessed
within each participant and tested with second-level statistics across
participants.

Comparing decoding performance between trial subsets
To compare decoding performance for different subsets of trials that
are of theoretical interest (e.g. between high/low surprisal, or
beginning/end of word), we add a modification to our train/test
cross-validation loop. The data are trained on the entire training set
(i.e. the same number of trials as the ‘typical analysis’), and test set is
grouped into the different levels of interest. We evaluate model
performance separately on each split of the test data, which yields a
time-course or generalisation matrix for each group of trials that we
evaluate on.

Group statistics
In order to evaluate whether decoding performance is better than
chance, we perform second- order permutation-based statistics. This
involves testing whether the distribution of beta coefficients across
participants significantlydiffers fromchance (zero) across timeusing a
one-sample permutation cluster test with default parameters specified
in theMNE-Python package46. The permutation test first computes the
observed metric of interest, namely the summed t-value in a temporal
cluster. The metric is then re-computed 10,000 times, each time ran-
domly permuting the sign of the beta coefficients before finding
temporal clusters. Significance is assessed by comparing the propor-
tion of times that the summed t-value in any identified temporal
cluster in the null distribution exceeds the observed sum t-value in the
cluster of interest.

Spatial coefficient analysis
To test the spatial evolution of phonetic representations over time, we
estimated beta coefficients by fitting linear regression (i.e. ridge
regression with no regularisation, so that the coefficients were inter-
pretable).We did this both in a decoding approach (predicting a single
stimulus property from multivariate sensor activity) and in an encod-
ing approach (predicting a single sensor response from multivariate
stimulus properties). Because our goal was to estimate the model
weights rather than to predict out of sample data, we fit the model on
all data (i.e. no cross validation). We confirmed that the beta coeffi-
cients from the decodingmodel and encodingmodel yielded the same
result and continued with the decoding coefficients for conceptual
simplicity.

We averaged the coefficients across participants and took the root
mean square. Then, to compute the trajectories, we created two
orthogonal sensor masks. First, a y-coordinate mask whereby the
posterior sensorswere coded as ‘0’ and anterior sensorswere coded as
‘1’. Second, a x-coordinate mask, whereby the left sensors were coded
as ‘0’ and the right sensors as ‘1’. Thesemasks were normalised to have
a norm equal to 1. The coefficients were projected onto thesemasks at
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each time sample, to yield a cosine distance over time, within the x-y
coordinate plane.

We computed a metric of trajectory structure which was a
weighted combination of range of movement (m, maximum cosine
distance minus minimum), smoothness (s, mean absolute step size at
each time sample) and variance (v, standard deviation across time
samples), thus:

m
s
v ð7Þ

We compute this metric for the x co-ordinates and y co-
ordinates separately, and then average the result. To evaluate whe-
ther a measure was statistically significant, we generated a surrogate
‘null’ dataset. For each participant, we ran the decoding analysis with
shuffled feature labels. This provided an estimate of chance decod-
ing, which we could use to generate null processing trajectories to
compare to the trajectories in our empirical data. If the trajectory
emerges from chance, movements should all be centred around
zero (see Supplemental Fig. 16). Whereas if the trajectory contain-
s meaningful structure, it should significantly differ from the dis-
tribution of random trajectories (see Fig. Supplemental 15).
Significance was evaluated from the proportion of instances where
the observed trajectory structure metric exceeded the null
distribution.

Simulation of phoneme sequence reconstruction
Toquantify howmanyphonemes the brainprocesses at once, andhow
it retains the order of those phonemes, we simulated responses to
4-phoneme anagrams. We estimated the spatiotemporal coefficients
from thedecodingmodelwithout regularisation (the same coefficients
used for the trajectory analysis) for voicing and plosive manner of
articulation. Simulated responses were generated by multiplying the
coefficients of each feature by a noise factor, shifting the phoneme
response by 100ms for each phoneme position and summing the
result. This resulted in twenty-four unique sequences without repeti-
tion (e.g., bpsz, pbzs, zspb…).

We simulated 10 responses to each unique phoneme sequence.
We epoched the data around each phoneme onset and used ridge
regression to reconstruct the phoneme sequence. We used cosine
similarity to quantify the accuracy of the reconstruction. To evaluate
statistical significance, we compared observed cosine similarity to
the cosine similarity when randomly shuffling phoneme labels
10,000 times, and computed the proportion of times that the
observed similarity exceeded the null distribution. We could accu-
rately reconstruct the history of five previous phonemes significantly
better than chance (1: cosine similarity 1.0, p < 0.001; 2: cosine
similarity 0.91, p < 0.001; 3: cosine similarity 0.79, p < 0.001; 4: cosine
similarity 0.38, p < .001; 5: cosine similarity 0.19, p = 0.012; 6: cosine
similarity 0.1, p = .6).

Reconstructing time since phoneme onset
We assessed whether responses encoded elapsed time since pho-
neme onset by applying ridge regression to phoneme-locked
responses. We cropped the time dimension from 100 to 400ms
which encapsulates the time window of strongest phonetic decod-
ing, and downsampled to 53.3 Hz. For each participant, we collapsed
the trial (∼50,000 phonemes) and time sample (16 timepoints
equally spaced between 100–400ms) dimensions. This yielded
around 800,000 neural responses per participant, each labelled for
its relative time since phoneme onset.

Using a 5-fold cross validation loop with shuffled order, we fit
ridge regression using default parameters in scikit-learn. For each trial,
the input features to the model were the 208-channel sensor

responses. The target features were latency since phoneme onset.
Both were scaled to have zero mean and unit variance.

For each test set, we computed the model’s prediction of onset
latency, which is a continuousmeasure between 100 and 400 (shown
in Fig. 4). in the absence of evidence to the contrary, the model will
predict the mean latency of the test set, in this case 250ms. The
within-fold correlation across participants between the true and
predicted latency since onset was highly significant (r =
0.83, p < 0.001).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. The raw data generated in
this study have been deposited in a OSF database (https://doi.org/10.
17605/OSF.IO/AG3KJ). The first 21 subjects in the database correspond
to the data used in this study. The subsequent 6 subjects were col-
lected later in time, in order to create a large database for public use by
the community. The stimuli we use were obtained from the Open
American National Corpus.

Code availability
Wehave uploaded the code to a public repository: https://github.com/
kingjr/meg-masc.
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