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Abstract

Models of perceptual decision making have historically been designed to maximally
explain behaviour and brain activity independently of their ability to actually
perform tasks. More recently, performance-optimized models have been shown
to correlate with brain responses to images and thus present a complementary
approach to understand perceptual processes. In the present study, we compare
how these approaches comparatively account for the spatio-temporal organization
of neural responses elicited by ambiguous visual stimuli. Forty-six healthy human
subjects performed perceptual decisions on briefly flashed stimuli constructed
from ambiguous characters. The stimuli were designed to have 7 orthogonal
properties, ranging from low-sensory levels (e.g. spatial location of the stimulus) to
conceptual (whether stimulus is a letter or a digit) and task levels (i.e. required hand
movement). Magneto-encephalography source and decoding analyses revealed that
these 7 levels of representations are sequentially encoded by the cortical hierarchy,
and actively maintained until the subject responds. This hierarchy appeared poorly
correlated to normative, drift-diffusion, and 5-layer convolutional neural networks
(CNN) optimized to accurately categorize alpha-numeric characters, but partially
matched the sequence of activations of 3/6 state-of-the-art CNNss trained for natural
image labeling (VGG-16, VGG-19, MobileNet). Additionally, we identify several
systematic discrepancies between these CNNs and brain activity, revealing the
importance of single-trial learning and recurrent processing. Overall, our results
strengthen the notion that performance-optimized algorithms can converge towards
the computational solution implemented by the human visual system, and open
possible avenues to improve artificial perceptual decision making.

1 Introduction

Perception - deriving an orderly categorization of the outside world - is a foundational problem
being addressed by both artificial intelligence (AI) and cognitive neuroscience. In the last decade,
Al systems have proved capable of resolving perceptual labeling at a level competitive to biological
systems. However, whether Al and biological algorithms use the same computational strategies
remains an open question.

Factors that makes categorization so challenging are invariance (one physical object can lead to
multiple distinct sensory inputs) and ambiguity (identical sensory inputs can be consistent with more
than one physical object). For example, any two-dimensional projection of the world on the retina is
by definition compatible with an infinite number of three-dimensional objects. Yet, despite of these
challenges, humans solve perceptual inference seemingly effortlessly.
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What are the computational principles upholding this ability? Three lines of research, each echoing
Marr’s tri-level epistemology, have historically tackled this issue. At the computational level, a vast
body of literature converge on the notion that simple perceptual decisions, including illusory ones,
follow Bayesian inference principles, whereby reports match the most plausible causes of ambiguous
sensory evidence [15]. At the implementational level, electrophysiology and neuroimaging converge
on the idea that perceptual recognition, should it be of simple visual objects [11]], alphabetic characters
[9] or faces [S]] depend on dedicated hierarchies of neural assemblies that incrementally combine
increasingly abstract features.

However, conclusions concerning Marr’s intermediary - "algorithmic"- are less agreed upon. On the
one hand, system neuroscience has generated a rich set of simple models to account for perceptual
decision making. For example, Shadlen and collaborators have shown how the pyramidal neurons in
the lateral intra-parietal cortex mimic drift-to-bound models [22]] to integrate lower-level evidence
over time [6]. Complementarily, Dehaene and collaborators have argued that the fronto-parietal
cortices implement a winner-take-all attractor to select the representation that will ultimately guide
behavior [3]]. These “late-resolution” models can be contrasted to computational architectures that
resolves noise and ambiguity with recurrent processes at the early visual stages [17] and/or throughout
distributed feedforward hierarchies [[1523]]. On the other hand, Al research has led to a great variety
of computational architectures, based on normative [16]], shallow, deep and recurrent architectures
[18], each with competitive efficiency.

Each of these computational architectures can be thought of as a candidate algorithm to explain
how the brain performs perceptual judgments. Algorithms can be distinguished in terms of the
representations they compute at each processing stage, and can thus be compared to the contents of
neuronal activity at each instant.

In the present study, we aimed to identify, from MEG recordings, the computational architecture
supporting perceptual decision making in human subjects presented with variably ambiguous charac-
ters. To this aim, we designed minimalistic stimuli that varied along 7 orthogonalized dimensions.
Each dimension specifically targeted one of the transformations putatively required by our perceptual
decision making paradigm. We then decoded each of these stimulus properties from brain activity,
and compared their time courses to those of multiple shallow and deep architectures tested on the
same task.

2 Method

Procedure Three experiments, consisting of identifying briefly flashed ambiguous characters, were
performed by three distinct groups of subjects. In experiments 1 and 2, 12 and 17 subjects performed
a subjective or an implicit categorization task, respectively. 10 euros was provided as compensation,
and each study took 1 hour. In experiment 3, 17 subjects performed an identification task inside an
Elekta Neuromag MEG scanner and were given 70 euros as compensation. All experiments were
approved by the local ethics committee. All subjects signed an informed consent form.

Stimuli  Stimuli were displayed on a 50% gray background at (60 Hz refresh rate) as controlled
with Psychtoolbox [21]. The overall visibility of the stimuli was artificially diminished via backward
masking (Experiment 1), overall contrast manipulation (Experiment 2) or crowding (Experiment 3)
to enhance decision making processes. Ten non-ambiguous stimuli (characters 0, 4, 5, 6, 8, 9, H,
E, C, A) were used as a base across all experiments, and were composed of 4 to 7 identical edges
horizontally or vertically oriented. Ambiguous stimuli were constructed from a linear combination of
any two characters distinguished by a single edge (e.g. 4-H). Eight levels of morph-contrast, linearly
distributed between 0 and 1 were used.

Tasks Experiments 1 and 2 served to ensure that the characters were indeed being perceived
categorically. In experiment 1, subjects were invited to provide a continuous report; responses were
categorically distributed around the non-ambiguous stimuli, suggesting a categorical percept (Figure
1, left). In experiment 2 subjects indicated whether two simultaneously flashed stimuli were identical
or not. We hypothesize that if stimuli are automatically perceived categorically, then two highly
ambiguous stimuli will be more often judged as different than two weakly ambiguous stimuli. Our
results confirmed this hypothesis (Figure 1, middle).
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Figure 1: Experiment 1: A variably ambiguous target stimulus was flashed on the screen and judged
with continuous perceptual reports. The matrix depicts the proportion of trials (disk size) rated with
each perceptual judgement (x-axis) for each of the 28 possible ambiguous stimulus (y-axis). The
results show that subjects tended to report ambiguous stimuli as their closest categorical stereotype.
Experiment 2: A pair of identical or different stimuli was rapidly flashed and had to be judged
as “identical” or not. The proportion of “identical” ratings diminished with the stimuli ambiguity,
suggesting automatic categorical perception. Experiment 3: A crowded target, variably morphed
between a letter (red) and a digit (blue), was rapidly flashed onto the screen and had to be identified
with a block-specific identity-response mapping. Subjects correctly identified targets as a function of
the objective evidence, and slow down reaction times for ambiguous targets.

In Experiment 3, brain activity was recorded with MEG while subjects were presented with letters
(e.g. E, H, A, C), digits (6, 4, 8, 9), or mixture between letters and digits. The target was surrounded
by two constant distractors, and presented as a brief flash lasting 100 ms either on the left or on the
right of fixation (Figure 1, right). On 83% of the trials, subjects were instructed to press, within
2 seconds, a button with their left hand or right hand to indicate the identity of the stimulus. This
identity-response mapping changed at every block to orthogonalize the putative conceptual category
(‘letter’, “digit’) and from the motor response (‘left’, ‘right’). On the other 17% of the trials, subjects
only had to pay attention to the stimuli, they did not have to indicate their percept. A total of 1920
trials, grouped into 40 blocks, were performed by each subject.

Neuroimaging Anatomical MRIs (3T Siemens MRI scanner with 1x1x1.1 mm voxels) were
acquired after the MEG acquisition. Grey and white matter were segmented with Freesurfer and
coregistered with each subject’s digitized head shapes along with three fiducial points. The raw
MEG data was corrected with Maxfilter’s SSS, bandpass filtered between 0.5 and 40 Hz (MNE
default parameters with firwin design). Epochs were cut from -300 ms to +1500 ms time-locked to
stimulus onset, and -1000 to +500 time-locked to the motor response and finally downsampled to 250
Hz. The forward solution for source localisation was computed separately for each subject, which
maps source space to sensor space given the brain anatomy of the subject. An inverse operator was
computed from the forward solution and the noise covariance over sensors averaged over all trials.
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The inverse model was then applied to each single-trial epoch, assuming an SNR of 3, loose dipole
fitting at 0.2, normal orientation of the dipole relative to the cortical sheet. The result was a dynamic
Statistical Parameter Map (dSPM) [2] value at each vertex of the reconstruction, for each millisecond
of the epoch. Decoding analyses were performed within a 5-split stratified cross-validation and
using 12-regularized z-scored linear estimators fit across all MEG sensors recorded at a unique time
sample. Continuous variables were fit with a ridge regression (alpha=1), scored with a Spearman
R. Categorical variables were fit with a logistic regression (C=1) and scored with the area under
the curve (AUC). Temporal generalization was performed by testing whether the estimator fit at a
given time sample could accurately predict other time samples [14], respectively aiming to detect
the effects of (i) stimulus position, (ii) the total number of edges presented on the screen, (iii) the
contrast of the critical feature, (iv) the continuous evidence in favor of a letter, (v) whether the
stimulus should be categorized as a digit or a letter, (vi) the difficulty of the decision and (vi) the
actual response button pressed by the subjects. By design, all but (iv) and (v) were orthogonalized
(see Figure 4A), and could thus be decoded independently of one another. Statistical effects are
based on second-level spatio-temporal cluster-testing with 10,000 permutations) across subjects. All
analyses were performed using MNE [7]], scikit-learn [20] and Scipy [12] with default parameters.

Models Four types of computational models were trained and/or tested to perform the task of
experiment 3. Model 1 is single-layer model, input with 14 features, corresponding to each of
the visual edges manipulated in experiment 3 and consists of identifying the Bayesian-optimal
combination of feature that maximally predicts each of the task-features. Model 2 is a 5-layer
convolutional neural network (2 convolutional layers (32, (3x3) relu), followed by one max pooling
(2x2) and 25% dropout, and ending with two successive dense (128 relu, 36 softmax) layers separated
by a 50% dropout, optimized with ADAM on the categorical cross-entropy across 36 classes (26
letters and 10 digits) using 72,869 images generated a single character generated from 1,000 fonts
presented on the left or right side of the image and tested on the ambiguous stimuli presented to the
subjects. The third type of model consists of VGG-16, VGG-19, ResNet-50, Xception, InceptionV3,
and MobileNet. For concision purposes, we presently focus on VGG-19, which we will refer to as
Model 3 [25], trained on ImageNet to label 1,000 classes from 1M images, and ResNet-50, which
we will refer to as Model 4 [10], also trained on ImageNet with the same labelling task. Note these
models are not optimized to perform our task, and were tested with the very same images presented
to subjects.

Decoding

Figure 2: Analogous decoding analyses were applied to the MEG and neural network data. Top: A
classifier is trained independently at each millisecond of the brain data across all 306 MEG sensors.
Bottom: A classifier is trained at each layer of a neural network, from artificial neurons that have
been projected into a 306-dimensional space using random Gaussian projections. In both cases,
the classifiers were fit to decode each of 7 properties of the stimuli. Temporal generalization was
applied to test how well a classifier fit at one time-sample / computational layer was able to predict
activity at other time-points / layers. This can be used to estimate the maintenance of each feature
representation.
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3 Results

3.1 The brain progressively transforms ambiguous characters into categorical
representations

Seventeen subjects had to identify a rapidly flashed variably-ambiguous character onto the left or
the right side of fixation, while their brain activity was recorded with MEG (Figure 1). The task
was designed to make the response buttons orthogonal to 6 other task-related features, ranging from
low-level sensory features (stimulus position, number of edges composing the stimulus) to perceptual
(contrast of the ambiguous edge) and conceptual level (evidence and optimal decision in favor of a
letter character). Subjects’ behavior appeared typical of decision-making tasks: the psychometric
function followed a sharp sigmoidal pattern and reaction time increased in ambiguous (645 ms) as
opposed to non-ambiguous items (580 ms).

We implemented source and decoding analyses at each time sample following the stimulus onset to
determine whether and when the brain activity was different between letters and digits. Low, but
strongly significant letter/digit decoding could be observed from ~150 ms up until 940 ms with a
peak around 370 ms (AUC=55%, p < .001). These results confirm that human subjects automatically
encode characters as abstract letter and digit categories even when the task does not require them to.
Source reconstruction suggest that these neural codes were generated in the ventral and dorsal stream
similarly to previous electro-corticography and fMRI research [24} 9], but were too variable across
subjects to survive correction for multiple comparison.

We then investigated whether and how the brain transforms ambiguous visual inputs into abstract
letter/digit categories. Specifically, we hypothesized that just a simple remapping of the stimulus
would be characterized by a linear correlation between the brain activity and objective evidence in
favor of the letter category. By contrast, a categorical representation would be non-linearly correlated
with the evidence: All stimuli that are more letter-like that digit like would be treated the same,
and the brain would not be sensitive to within-category variance. Using multiple regression on the
probabilistic predictions of the letter/digit classifiers, our results show that the neural responses
linearly correlate with the evidence between ~200 and 400 ms after stimulus onset, and subsequently
correlate with the optimal categories. Single-layer, recurrent and deep architectures designed to
mimic these neural responses suggest that only recurrent and deep neural networks can progressively
transition from a linear to a categorical mapping of ambiguous stimulus (Figure 3). Temporal
generalization (TG) analyses can be used to distinguish our recurrent and deep architecture, by
predicting square and diagonal TG matrices respectively. TG analyses of the MEG data appeared
diagonal across all decodable time samples, thus suggesting that the categorization of ambiguous
stimuli is supported by a deep feedforward neural architecture. Overall these results suggest that
the disambiguation algorithm of the human brain is performed by a long series of processing stages
typical of deep neural networks.

3.2 The brain sequentially transforms sensory inputs to task-related representations

To test whether perceptual decision making was comprised of a series of processing stages in the
human brain, we implemented source and decoding analyses at each time sample following the
stimulus onset and isolated 7 putative levels of representations characterizing each stimulus. The
results show that all of the seven features can be decoded from the MEG evoked responses (Figure
4). Critically, each representation started to be decodable and peaked sequentially as a function of
their putative level of abstraction: brain activity was first modulated by stimulus position (mean
peak: 120 ms, AUC=94%), then the number of edges (peak: 250 ms; R=16%), contrast (peak: 340
ms, R=7%), Letter/Digit evidence and category (peak: 370 ms, R=12%, AUC= 55%), and ended
with the difficulty (peak: 590 ms, R=8%) and response button (peak: 600 ms, AUC=65%). All of
these features remained decodable up until subjects’ response. Overall, these results suggest that the
human brain hierarchically encodes the sensory stimulus into a series of increasingly task-oriented
representations, reminiscent of cascade models [[19]. The temporal generalization analyses (Figure
4D) suggest that most of the stimulus properties are processed in a feedforward manner, as indicated
by the diagonal generalization pattern. However, not all features could be accounted for with a purely
feedforward architecture: The TG matrix for stimulus side shows reactivation patterns, supporting
the presence of recurrent processing for this feature.
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Figure 3: Left: Simple perceptual decisions can be modeled as a non-linear transformation (green) of
a variably-ambiguous (purple) stimulus. Both recurrent and deep neural network architectures can
progressively transform an ambiguous input into a category, leading to drift-diffusion like responses
over time: i.e. activations that ramp towards the most likely category at a speed proportional to the
evidence for that category. Simple recurrent networks are characterized by a stable spatio-temporal
profile leading to a square temporal generalization (TG) matrix. Simple feedforward architectures
can be associated with a constant change of activations and thus lead to a diagonal TG matrix. Right:
Probabilistic estimates of letter versus digits estimated from MEG signals at each time sample show
that the neural activity correlates linearly with the evidence from 200 to 400 ms, and then becomes
categorical (400-500 ms). TG analyses of the MEG (turquoise) reveal a diagonal patterns typical of
deep neural networks.

3.3 Distinct computational architectures can equally perform character categorization, but
predict different latent representations

The computational models were designed as descriptions of neural responses, and not trained to
efficiently solve the task. To better probe the computational architecture underlying perceptual
decision making, we thus compared brain responses to four feedforward computational models that
all performed our perceptual decision task at (or close to) optimality. The models differed in their
overall architecture as well in the task for which they were optimized. Importantly they all predict
distinct latent representations decodable at each processing stage.

Our results demonstrate that a single softmax layer, taking the 14 visual edges as inputs can already
accurately categorize all of the target stimuli of experiment 3 (Model 1). Multivariate decoding of its
inputs efficiently extracts all but the ‘difficulty’ task features. In other words, given the right features,
a single layer model can optimally perform our task, but predict that all but the difficulty feature
should be equally and simultaneously decodable.

We then trained a series of shallow and deep convolutional neural networks (i) trained either on
character recognition (Model 2) or image labeling (Models 3 & 4), and (ii) tested with our task
by replacing the final softmax layer fit for our task. Since the input features are pixels, and thus
oversample the inputs of Models 1, models 2, 3 and 4 subsume single-layer model. To identify the
specific predictions of these deeper models, we thus randomly projected the hidden activations of
each layer onto 306 virtual Gaussian sensors. This operation, repeated 17 times, aimed at mimicking
the within-subject decoding approach undertaken with MEG, and constrains the to-be-decoded
features to elicit an activation in a sufficiently high proportion of neurons to be picked by a small
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Figure 4: A: The covariance matrix indicates how each of the seven properties covary with one
another (R?). B: Decoding scores (y-axis) for each of the seven features, when MEG classifiers
are trained and tested at the same milliseconds (x-axis) respective to stimulus onset. Colored areas
indicate statistical significance across subjects. The vertical lines indicate the time of each decoding
peak. C: MEG source localization at peak time. D: Temporal generalization analysis consists of
training a classifier at each time-point, and testing it at all other time-points, in order to assess the
maintenance of each representation. Diagonal patterns suggest that the coding of neuronal activity
changes over time. E: Time at which decoding starts (y-axis) and peaks (x-axis) for individual
subjects. F: Normalized decoding scores. Overall, the results demonstrate that each of the features is
sequentially encoded in the brain activity, in a way that specifically matches efficiency-optimized
CNNEs.

number of random projections. Our results showed that the optimized CNN (Model 2) adequately
identify all characters (>94% accuracy, chance=1/36th), and adequately label the stimuli designed for
our task (100% accuracy). Additionally, the results suggest that we can equally decode the seven
orthogonalized features of our task at all layers of the neural network.

Finally, we input our stimuli to the CNNs trained for natural image labeling (Models 3 & 4), and
analyzed them similarly to Model 2. Although these neural networks (VGG-19 and ResNet-50)
were not trained for character recognition, we could decode of each of the task-features. However,
and contrary to the other models, each of the 7 features could not be equally decoded from all
layers. First, early layers could only be used to decode the position of the stimulus. Second, the
decoding of the number of edges progressively increased with depth. Third, the perceptual (contrast)
conceptual (letter evidence and category) and motor response could only be decoded from the deep,
fully connected layers. Finally, once a feature could be decoded in a given layer, it remained equally
decodable within each of the subsequent layers. One of the other models we tested (MobileNet) also
showed this sequential decoding pattern, whereas the remaining models we tested, Xception and
Inception V3, did not.

This pattern of results is neither compatible with single layer models (Models 1), nor with our shallow
CNN (Model 2) optimized for character recognition. By contrast, this sequence of neural responses
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Figure 5: Decoding performance for each of the tested computational models. The normative model
distinguishes stimulus features based on optimal linear combinations of the 14 visual edges that make
up the stimulus input. All features were perfectly decodable, other than the input difficulty. The
shallow CNN was trained to identify a character label (e.g. “H”, “E”, “4”) from a wide range of letter
and digit characters. It was not explicitly taught the distinction between the letter/digit category. The
decoding plot is analogous to Figure 4 for the MEG data in terms of the available features at each
processing stage. VGG19 is a 19-layer CNN optimized to label thousands of categories from natural
images. ResNet50 is a 50-layer CNN trained similarly to VGG19. Each model was able to perform
the task, but predicted different hidden representations between the image and the decision.

strongly correlate with the hierarchy of latent representation generated by deep neural networks
trained for complex natural-image labeling, at the notable exception of the difficulty feature.

4 Discussion

Both behavioral and MEG analyses confirmed that subjects automatically categorize ambiguous
characters, seemingly thanks to weak but detectable neural assemblies of the ventral and dorsal
cortical hierarchies as previously reported by fMRI [9]] and electro-corticography [24]]. Importantly,
the representations estimated from letter/digit probabilistic classifiers, revealed typical drift-diffusion
patterns [22] and thus echoes the classic findings in the electrophysiology of perceptual decision
making [[6]]. Indeed, our results appear similar to the classic ramping activity observed by Shadlen
and collaborators in the LIP of macaque monkeys during perceptual decision making tasks: the
single trial predictions were decodable from ~200 ms, ramped at a speed proportional to the objective
evidence manipulated in a given trial, and up until a subject’s motor action.

However, source and temporal generalization analyses suggest that the transformation of ambiguous
evidence into a categorical representation is not encoded in the activity of a unique neural assemblies.
Rather, ambiguous representations are sequentially and repeatedly re-coded via a long series of
transient and increasingly categorical neural assemblies, a particular computational feature also found
in deep as well as in some recurrent architectures. The possibility that human perceptual decision
making depends on such architecture is further strengthened by the specific correlation observed
between (i) the decoding time courses of the 7 orthogonalized features estimated from the brain
activity and (ii) those estimated from the deep neural networks.
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However, two lines of results suggest that none of the presently tested models fully account for brain
activity. First, the "difficulty" feature systematically appeared decodable from the early processing
stages of our models; by contrast, in the MEG data, this feature only rises late (simultaneous to
the motor responses) and lasted until the beginning of the subsequent trials. This suggests that the
"difficulty" feature may be more relevant to learning than sensory extraction. Indeed, unlike the
presently-tested models, the human brain is known to adjust its decision parameters at each trial [26].
The second source of discrepancy comes from source and temporal generalization analyses, which,
contrary to our feedforward models, suggest that some neural codes are partially maintained over
time. This particular result suggests that recurrent and/or top-down connections need to be added to
our computational models to better match the sequence of brain responses.

Overall, the present work strengthens a recent line of electrophysiology and neuroimaging research
demonstrating several elements of convergence between the mammalian visual system and deep
convolutional neural networks trained for image categorization [27, (8] [1, 4, [13]. Additionally, our
results pave the way to better identify the computational architecture of human perception, and apply
it to current advances in Al research.
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